Asynchronous Programming in Python /

In this course, we will look at using asynchronous programming in Python: the options, pitfalls, and best practices. We start with multi-threading, which is particularly useful when there is a lot of waiting, e.g. for HTTP requests or disk access. With multi-threading, you can start many requests in...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Format: Electronic Video
Language:English
Published: London, England : Springer Nature, 2021
Subjects:

MARC

LEADER 00000cgm a2200000ui 4500
001 in00000014616
006 m o c
007 cr |n||||||||a
007 vz |za|z|
008 210415s2021 enk087 e o vneng d
005 20240624205246.6
035 |a (VaAlASP)ASP5115442/marc 
035 |a (OCoLC)1251433620 
035 |a (OCoLC)on1251433620 
040 |a ALSTP  |b eng  |e rda  |c ALSTP  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ 
245 0 0 |a Asynchronous Programming in Python /  |c Springer. 
246 3 3 |a Asynchronous Programming in Python with Threads and Processes 
264 1 |a London, England :  |b Springer Nature,  |c 2021. 
300 |a 1 online resource (87 minutes) 
306 |a 012621 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file  |2 rda 
500 |a Title from resource description page (viewed April 16, 2021). 
520 |a In this course, we will look at using asynchronous programming in Python: the options, pitfalls, and best practices. We start with multi-threading, which is particularly useful when there is a lot of waiting, e.g. for HTTP requests or disk access. With multi-threading, you can start many requests in quick succession and then wait for all of them to complete at once. Next, the course will show you how to write your code in a thread-safe manner, and how to use it risk-free. Further, it covers Python's global interpreter lock, which prevents a lot of serious problems in Python but also stops you from running threads in parallel. Going forward we discover how you can use Python's multiprocessing library to run functions in parallel. Threads and processes often need to share or exchange data. In asynchronous code just passing Python objects is usually not the safest way to do this. This course looks at the main ways to do this correctly in Python, such as queues and events. Finally, the course moves on to the concurrent.future library which contains higher-level abstractions, including thread and processing pools and an asynchronous map function.The course finishes with advice on how to write robust asynchronous code, and how to test and debug it. 
546 |a In English. 
650 0 |a Python (Computer program language) 
650 0 |a Application software  |x Development. 
650 0 |a Parallel programming (Computer science) 
655 7 |a Instructional films.  |2 lcgft 
710 2 |a Springer Nature (Firm),  |e publisher. 
852 |b E-Media  |h Alexander Street Press 
856 4 0 |u https://ezproxymcp.flo.org/login?url=http://www.aspresolver.com/aspresolver.asp?MARC;5115442  |z Full text (MCPHS users only)  |t 0 
938 |a Alexander Street  |b ALSP  |n ASP5115442/marc 
938 |a Alexander Street  |b ALSP  |n ASP5115442 
947 |a FLO  |x avon 
999 f f |s 91ca6988-f8ef-4338-a73e-9eae8d6ef809  |i bd260f22-a53b-4a6f-b066-9e5b6323d42f  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Media  |t 0  |e Alexander Street Press  |h Other scheme 
856 4 0 |t 0  |u https://ezproxymcp.flo.org/login?url=http://www.aspresolver.com/aspresolver.asp?MARC;5115442  |y Full text (MCPHS users only)