Learning Data Mining with Python /

Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models. About This Book* Use a wide variety of Python libraries for practical data mining purposes.* Learn...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Layton, Robert (Author)
Format: Electronic eBook
Language:English
Published: Birmingham : Packt Publishing, 2017
Edition:Second edition.
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000087597
006 m o d
007 cr cnu---unuuu
008 170526s2017 enk o 000 0 eng d
005 20240626182816.5
019 |a 1006964126 
020 |a 9781787129566  |q (electronic bk.) 
020 |a 178712956X  |q (electronic bk.) 
020 |a 1787126781 
020 |a 9781787126787 
020 |z 178712956X 
020 |z 9781787126787 
020 |z 1787126781 
024 3 |a 9781787126787 
029 1 |a AU@  |b 000066232784 
029 1 |a CHNEW  |b 000965908 
029 1 |a AU@  |b 000067106098 
029 1 |a AU@  |b 000060931470 
035 |a (OCoLC)989062883  |z (OCoLC)1006964126 
035 |a (OCoLC)ocn989062883 
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d EBLCP  |d MERUC  |d CHVBK  |d OCLCQ  |d COO  |d N$T  |d OCLCF  |d UOK  |d MOQ  |d WYU  |d OCLCQ  |d VT2  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
050 4 |a QA76.73.P98  |b .L398 2017 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.312  |2 22 
100 1 |a Layton, Robert,  |e author. 
245 1 0 |a Learning Data Mining with Python /  |c Robert Layton. 
250 |a Second edition. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (358 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 8 |a Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models. About This Book* Use a wide variety of Python libraries for practical data mining purposes.* Learn how to find, manipulate, analyze, and visualize data using Python.* Step-by-step instructions on data mining techniques with Python that have real-world applications. Who This Book Is ForIf you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected. What You Will Learn* Apply data mining concepts to real-world problems* Predict the outcome of sports matches based on past results* Determine the author of a document based on their writing style* Use APIs to download datasets from social media and other online services* Find and extract good features from difficult datasets* Create models that solve real-world problems* Design and develop data mining applications using a variety of datasets* Perform object detection in images using Deep Neural Networks* Find meaningful insights from your data through intuitive visualizations* Compute on big data, including real-time data from the internetIn DetailThis book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations. Style and approachThis book will be your comprehensive guide to learning the various data mining techniques and implementing them in Python. A variety of real-world datasets is used to explain data mining techniques in a very crisp and easy to understand manner. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central College Complete 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 2 |a Data Mining 
758 |i has work:  |a Learning data mining with Python (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH7tfppqd3ym44mGR78DMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=4851656  |z Full text (MCPHS users only)  |t 0 
884 |a LDL ebooks ONIX to marcxml transformation using Record_Load-eBooks_Legal_Deposit_onix2marc_v2-0.xsl  |g 20170526  |k 9781787129566  |q Uk. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4851656 
938 |a EBSCOhost  |b EBSC  |n 1534825 
947 |a FLO  |x pq-ebc-base 
999 f f |s 7ac9ef74-9647-4d74-a003-b55c2a2baafd  |i 1a3f22ce-96a9-49ce-a3b7-8fbcef91a092  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=4851656  |y Full text (MCPHS users only)