Data mining with decision trees : theory and applications /

This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique. Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of e...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Rokach, Lior
Other Authors: Maimon, Oded Z.
Format: Electronic eBook
Language:English
Published: Hackensack, N.J. ; London : World Scientific, 2008
Series:Series in machine perception and artificial intelligence ; v. 69.
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000ui 4500
001 in00000127261
006 m o d
007 cr |||||||||||
008 080311s2008 njua eob 001 0 eng d
005 20240626220550.7
019 |a 886107495  |a 1113466910 
020 |a 9812771727 
020 |a 9789812771728 
020 |z 9789812771711 
020 |z 9812771719 
029 1 |a AU@  |b 000058360823 
029 1 |a DEBBG  |b BV044178877 
029 1 |a DEBSZ  |b 413927318 
029 1 |a DEBSZ  |b 445579609 
035 |a (OCoLC)859886155  |z (OCoLC)886107495  |z (OCoLC)1113466910 
035 |a (OCoLC)ocn859886155 
040 |a NLE  |b eng  |e pn  |c NLE  |d OCLCO  |d EBLCP  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d UHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
050 4 |a QA76.9.D343  |b R654 2008 
082 0 4 |a 006.312  |2 22 
100 1 |a Rokach, Lior. 
245 1 0 |a Data mining with decision trees :  |b theory and applications /  |c Lior Rokach, Oded Maimon. 
260 |a Hackensack, N.J. ;  |a London :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (xviii, 244 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 69 
504 |a Includes bibliographical references (pages 215-242) and index. 
505 0 |a Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match. 
505 8 |a 2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate. 
505 8 |a 3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria. 
505 8 |a 4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning. 
505 8 |a 5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets. 
520 |a This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique. Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Data mining. 
650 0 |a Decision trees. 
650 0 |a Machine learning. 
650 0 |a Decision support systems. 
650 2 |a Data Mining 
650 2 |a Decision Trees 
650 2 |a Decision Support Systems, Management 
650 2 |a Machine Learning 
700 1 |a Maimon, Oded Z. 
758 |i has work:  |a Data mining with decision trees (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrJ4GkxM9mwVwmfWPWXr3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |c Hardback  |z 9789812771711 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 69. 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1679477  |z Full text (MCPHS users only)  |t 0 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679477 
947 |a FLO  |x pq-ebc-base 
999 f f |s b02f7f03-0ffd-44aa-b08c-9e3388cd3461  |i 8c2abb51-9e7c-4bdb-a5cc-7d601b6f52a0  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1679477  |y Full text (MCPHS users only)