Deep learning with Python : a hands-on introduction /

Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practica...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Ketkar, Nikhil (Author)
Format: Electronic eBook
Language:English
Published: [United States] : Apress, 2017
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000136695
006 m o d
007 cr cnu|||unuuu
008 170419s2017 xxu ob 000 0 eng d
005 20240627013612.2
015 |a GBB8O2171  |2 bnb 
016 7 |a 019177199  |2 Uk 
019 |a 983670648  |a 983870377  |a 988378848  |a 999486430  |a 1005801585  |a 1011850625  |a 1048154656  |a 1058316155  |a 1066601168  |a 1077473908  |a 1086447512  |a 1096644619  |a 1103272113  |a 1113761240  |a 1122816325  |a 1204061343 
020 |a 9781484227664  |q (electronic bk.) 
020 |a 1484227662  |q (electronic bk.) 
020 |z 9781484227657 
020 |z 1484227654 
024 7 |a 10.1007/978-1-4842-2766-4  |2 doi 
029 1 |a AU@  |b 000059919673 
029 1 |a AU@  |b 000065065817 
029 1 |a AU@  |b 000066231096 
029 1 |a UKMGB  |b 019177199 
035 |a (OCoLC)982957880  |z (OCoLC)983670648  |z (OCoLC)983870377  |z (OCoLC)988378848  |z (OCoLC)999486430  |z (OCoLC)1005801585  |z (OCoLC)1011850625  |z (OCoLC)1048154656  |z (OCoLC)1058316155  |z (OCoLC)1066601168  |z (OCoLC)1077473908  |z (OCoLC)1086447512  |z (OCoLC)1096644619  |z (OCoLC)1103272113  |z (OCoLC)1113761240  |z (OCoLC)1122816325  |z (OCoLC)1204061343 
035 |a (OCoLC)ocn982957880 
037 |a CL0501000009  |b Safari Books Online 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d OCLCF  |d YDX  |d UAB  |d ESU  |d AZU  |d UPM  |d COO  |d OTZ  |d VT2  |d K6U  |d LIV  |d OCLCQ  |d IOG  |d OCLCO  |d U3W  |d SNK  |d D6H  |d CAUOI  |d VVB  |d KSU  |d AU@  |d WYU  |d UMI  |d TOH  |d UKMGB  |d G3B  |d STF  |d LEAUB  |d UKAHL  |d C6I  |d UHL  |d LEATE  |d OCLCQ  |d BRF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d SXB 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
072 7 |a UMA  |2 bicssc 
082 0 4 |a 005.13/3  |2 23 
100 1 |a Ketkar, Nikhil,  |e author. 
245 1 0 |a Deep learning with Python :  |b a hands-on introduction /  |c Nikhil Ketkar. 
264 1 |a [United States] :  |b Apress,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
504 |a Includes bibliographical references. 
505 0 |a At a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Chapter 1: Introduction to Deep Learning; Historical Context; Advances in Related Fields; Prerequisites ; Overview of Subsequent Chapters; Installing the Required Libraries ; Chapter 2: Machine Learning Fundamentals; Intuition; Binary Classification; Regression; Generalization; Regularization; Summary; Chapter 3: Feed Forward Neural Networks; Unit; Overall Structure of a Neural Network; Expressing the Neural Network in Vector Form; Evaluating the output of the Neural Network. 
505 8 |a Training the Neural NetworkDeriving Cost Functions using Maximum Likelihood; Binary Cross Entropy; Cross Entropy; Squared Error; Summary of Loss Functions; Types of Units/Activation Functions/Layers; Linear Unit; Sigmoid Unit; Softmax Layer; Rectified Linear Unit (ReLU); Hyperbolic Tangent; Neural Network Hands-on with AutoGrad; Summary; Chapter 4: Introduction to Theano; What is Theano; Theano Hands-On; Summary; Chapter 5: Convolutional Neural Networks; Convolution Operation; Pooling Operation; Convolution-Detector-Pooling Building Block; Convolution Variants; Intuition behind CNNs; Summary. 
505 8 |a Chapter 6: Recurrent Neural NetworksRNN Basics; Training RNNs; Bidirectional RNNs; Gradient Explosion and Vanishing; Gradient Clipping; Long Short Term Memory; Summary; Chapter 7: Introduction to Keras; Summary; Chapter 8: Stochastic Gradient Descent; Optimization Problems; Method of Steepest Descent; Batch, Stochastic (Single and Mini-batch) Descent; Batch; Stochastic Single Example; Stochastic Mini-batch; Batch vs. Stochastic; Challenges with SGD; Local Minima; Saddle Points; Selecting the Learning Rate; Slow Progress in Narrow Valleys; Algorithmic Variations on SGD; Momentum. 
505 8 |a Nesterov Accelerated Gradient (NAS)Annealing and Learning Rate Schedules; Adagrad; RMSProp; Adadelta; Adam; Resilient Backpropagation; Equilibrated SGD; Tricks and Tips for using SGD; Preprocessing Input Data; Choice of Activation Function; Preprocessing Target Value; Initializing Parameters; Shuffling Data; Batch Normalization; Early Stopping; Gradient Noise; Parallel and Distributed SGD; Hogwild; Downpour; Hands-on SGD with Downhill; Summary; Chapter 9: Automatic Differentiation; Numerical Differentiation; Symbolic Differentiation; Automatic Differentiation Fundamentals. 
505 8 |a Forward/Tangent Linear ModeReverse/Cotangent/Adjoint Linear Mode; Implementation of Automatic Differentiation; Source Code Transformation; Operator Overloading; Hands-on Automatic Differentiation with Autograd; Summary; Chapter 10: Introduction to GPUs; Summary; Index. 
520 |a Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. You will: Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed April 20, 2017). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 2 |a Machine Learning 
758 |i has work:  |a Deep learning with Python (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrYQ9tQ97DqCtpQkr6vVC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ketkar, Nikhil.  |t Deep learning with Python.  |d [United States] : Apress, 2017  |z 1484227654  |z 9781484227657  |w (OCoLC)975135719 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=6363117  |z Full text (MCPHS users only)  |t 0 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6363117 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33062893 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5575806 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4843570 
938 |a EBSCOhost  |b EBSC  |n 1504992 
938 |a YBP Library Services  |b YANK  |n 14240886 
947 |a FLO  |x pq-ebc-base 
999 f f |s 0b3d4a23-4a02-4ab3-9354-977f7738b991  |i 556b3c3b-bff0-44ef-922e-2c5cdb65eaf8  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=6363117  |y Full text (MCPHS users only)