Matrix Algebra for Linear Models

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Gruber, Marvin H. J.
Format: Electronic eBook
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2013
Series:New York Academy of Sciences Ser.
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000uu 4500
001 in00000138913
006 m o d
007 cr cnu||||||||
008 230209s2013 xx o ||| 0 eng d
005 20240627023855.0
020 |a 9781118800416 
020 |a 1118800419 
035 |a (OCoLC)1347025109 
035 |a (OCoLC)on1347025109 
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d OCLCL  |d OCLCQ 
082 0 4 |a 519.5/36  |q OCoLC  |2 23/eng/20231120 
100 1 |a Gruber, Marvin H. J. 
245 1 0 |a Matrix Algebra for Linear Models  |h [electronic resource]. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2013. 
300 |a 1 online resource (393 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
500 |a 10.2 Reparameterization of a Non-full-Rank Model to a Full-Rank Model 
505 0 |a Intro -- Matrix Algebra for Linear Models -- Copyright -- Contents -- Preface -- Acknowledgments -- Part I Basic Ideas about Matrices and Systems of Linear Equations -- Section 1 What Matrices Are and Some Basic Operations with Them -- 1.1 Introduction -- 1.2 What Are Matrices and Why Are They Interesting to a Statistician? -- 1.3 Matrix Notation, Addition, and Multiplication -- 1.4 Summary -- Exercises -- Section 2 Determinants and Solving a System of Equations -- 2.1 Introduction -- 2.2 Definition of and Formulae for Expanding Determinants 
505 8 |a 2.3 Some Computational Tricks for the Evaluation of Determinants -- 2.4 Solution to Linear Equations Using Determinants -- 2.5 Gauss Elimination -- 2.6 Summary -- Exercises -- Section 3 The Inverse of a Matrix -- 3.1 Introduction -- 3.2 The Adjoint Method of Finding the Inverse of a Matrix -- 3.3 Using Elementary Row Operations -- 3.4 Using the Matrix Inverse to Solve a System of Equations -- 3.5 Partitioned Matrices and Their Inverses -- 3.6 Finding the Least Square Estimator -- 3.7 Summary -- Exercises -- Section 4 Special Matrices and Facts about Matrices That Will Be Used in the Sequel 
505 8 |a 4.1 Introduction -- 4.2 Matrices of the Form aIn+bJ n -- 4.3 Orthogonal Matrices -- 4.4 Direct Product of Matrices -- 4.5 An Important Property of Determinants -- 4.6 The Trace of a Matrix -- 4.7 Matrix Differentiation -- 4.8 The Least Square Estimator Again -- 4.9 Summary -- Exercises -- Section 5 Vector Spaces -- 5.1 Introduction -- 5.2 What Is a Vector Space? -- 5.3 The Dimension of a Vector Space -- 5.4 Inner Product Spaces -- 5.5 Linear Transformations -- 5.6 Summary -- Exercises -- Section 6 The Rank of a Matrix and Solutions to Systems of Equations -- 6.1 Introduction 
505 8 |a 6.2 The Rank of a Matrix -- 6.3 Solving Systems of Equations with Coefficient Matrix of Less than Full Rank -- 6.4 Summary -- Exercises -- Part II Eigenvalues, the Singular Value Decomposition, and Principal Components -- Section 7 Finding the Eigenvalues of a Matrix -- 7.1 Introduction -- 7.2 Eigenvalues and Eigenvectors of a Matrix -- 7.3 Nonnegative Definite Matrices -- 7.4 Summary -- Exercises -- Section 8 The Eigenvalues and Eigenvectors of Special Matrices -- 8.1 Introduction -- 8.2 Orthogonal, Nonsingular, and Idempotent Matrices -- 8.3 The Cayley-Hamilton Theorem 
505 8 |a 8.4 The Relationship between the Trace, the Determinant, and the Eigenvalues of a Matrix -- 8.5 The Eigenvalues and Eigenvectors of the Kronecker Product of Two Matrices -- 8.6 The Eigenvalues and the Eigenvectors of a Matrix of the Form aI + bJ -- 8.7 The Loewner Ordering -- 8.8 Summary -- Exercises -- Section 9 The Singular Value Decomposition (SVD) -- 9.1 Introduction -- 9.2 The Existence of the SVD -- 9.3 Uses and Examples of the SVD -- 9.4 Summary -- Exercises -- Section 10 Applications of the Singular Value Decomposition -- 10.1 Introduction 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
758 |i has work:  |a Matrix algebra for linear models (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGhFwvB3dPM4mQDm8j9gPP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Gruber, Marvin H. J.  |t Matrix Algebra for Linear Models  |d Newark : John Wiley & Sons, Incorporated,c2013  |z 9781118592557 
830 0 |a New York Academy of Sciences Ser. 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=7104088  |z Full text (MCPHS users only)  |t 0 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7104088 
947 |a FLO  |x pq-ebc-base 
999 f f |s c29e3899-bab9-46e4-951d-8e3570ccfea0  |i 9c381033-391d-4a51-b3ba-0e20ea3daa43  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=7104088  |y Full text (MCPHS users only)