|
|
|
|
LEADER |
00000cam a2200000uu 4500 |
001 |
in00000138913 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2013 xx o ||| 0 eng d |
005 |
20240627023855.0 |
020 |
|
|
|a 9781118800416
|
020 |
|
|
|a 1118800419
|
035 |
|
|
|a (OCoLC)1347025109
|
035 |
|
|
|a (OCoLC)on1347025109
|
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d OCLCQ
|d OCLCO
|d EBLCP
|d OCLCQ
|d OCLCL
|d OCLCQ
|
082 |
0 |
4 |
|a 519.5/36
|q OCoLC
|2 23/eng/20231120
|
100 |
1 |
|
|a Gruber, Marvin H. J.
|
245 |
1 |
0 |
|a Matrix Algebra for Linear Models
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2013.
|
300 |
|
|
|a 1 online resource (393 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser.
|
500 |
|
|
|a Description based upon print version of record.
|
500 |
|
|
|a 10.2 Reparameterization of a Non-full-Rank Model to a Full-Rank Model
|
505 |
0 |
|
|a Intro -- Matrix Algebra for Linear Models -- Copyright -- Contents -- Preface -- Acknowledgments -- Part I Basic Ideas about Matrices and Systems of Linear Equations -- Section 1 What Matrices Are and Some Basic Operations with Them -- 1.1 Introduction -- 1.2 What Are Matrices and Why Are They Interesting to a Statistician? -- 1.3 Matrix Notation, Addition, and Multiplication -- 1.4 Summary -- Exercises -- Section 2 Determinants and Solving a System of Equations -- 2.1 Introduction -- 2.2 Definition of and Formulae for Expanding Determinants
|
505 |
8 |
|
|a 2.3 Some Computational Tricks for the Evaluation of Determinants -- 2.4 Solution to Linear Equations Using Determinants -- 2.5 Gauss Elimination -- 2.6 Summary -- Exercises -- Section 3 The Inverse of a Matrix -- 3.1 Introduction -- 3.2 The Adjoint Method of Finding the Inverse of a Matrix -- 3.3 Using Elementary Row Operations -- 3.4 Using the Matrix Inverse to Solve a System of Equations -- 3.5 Partitioned Matrices and Their Inverses -- 3.6 Finding the Least Square Estimator -- 3.7 Summary -- Exercises -- Section 4 Special Matrices and Facts about Matrices That Will Be Used in the Sequel
|
505 |
8 |
|
|a 4.1 Introduction -- 4.2 Matrices of the Form aIn+bJ n -- 4.3 Orthogonal Matrices -- 4.4 Direct Product of Matrices -- 4.5 An Important Property of Determinants -- 4.6 The Trace of a Matrix -- 4.7 Matrix Differentiation -- 4.8 The Least Square Estimator Again -- 4.9 Summary -- Exercises -- Section 5 Vector Spaces -- 5.1 Introduction -- 5.2 What Is a Vector Space? -- 5.3 The Dimension of a Vector Space -- 5.4 Inner Product Spaces -- 5.5 Linear Transformations -- 5.6 Summary -- Exercises -- Section 6 The Rank of a Matrix and Solutions to Systems of Equations -- 6.1 Introduction
|
505 |
8 |
|
|a 6.2 The Rank of a Matrix -- 6.3 Solving Systems of Equations with Coefficient Matrix of Less than Full Rank -- 6.4 Summary -- Exercises -- Part II Eigenvalues, the Singular Value Decomposition, and Principal Components -- Section 7 Finding the Eigenvalues of a Matrix -- 7.1 Introduction -- 7.2 Eigenvalues and Eigenvectors of a Matrix -- 7.3 Nonnegative Definite Matrices -- 7.4 Summary -- Exercises -- Section 8 The Eigenvalues and Eigenvectors of Special Matrices -- 8.1 Introduction -- 8.2 Orthogonal, Nonsingular, and Idempotent Matrices -- 8.3 The Cayley-Hamilton Theorem
|
505 |
8 |
|
|a 8.4 The Relationship between the Trace, the Determinant, and the Eigenvalues of a Matrix -- 8.5 The Eigenvalues and Eigenvectors of the Kronecker Product of Two Matrices -- 8.6 The Eigenvalues and the Eigenvectors of a Matrix of the Form aI + bJ -- 8.7 The Loewner Ordering -- 8.8 Summary -- Exercises -- Section 9 The Singular Value Decomposition (SVD) -- 9.1 Introduction -- 9.2 The Existence of the SVD -- 9.3 Uses and Examples of the SVD -- 9.4 Summary -- Exercises -- Section 10 Applications of the Singular Value Decomposition -- 10.1 Introduction
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
655 |
|
0 |
|a Electronic books.
|
758 |
|
|
|i has work:
|a Matrix algebra for linear models (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGhFwvB3dPM4mQDm8j9gPP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Gruber, Marvin H. J.
|t Matrix Algebra for Linear Models
|d Newark : John Wiley & Sons, Incorporated,c2013
|z 9781118592557
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
852 |
|
|
|b E-Collections
|h ProQuest
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=7104088
|z Full text (MCPHS users only)
|t 0
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7104088
|
947 |
|
|
|a FLO
|x pq-ebc-base
|
999 |
f |
f |
|s c29e3899-bab9-46e4-951d-8e3570ccfea0
|i 9c381033-391d-4a51-b3ba-0e20ea3daa43
|t 0
|
952 |
f |
f |
|a Massachusetts College of Pharmacy and Health Sciences
|b Online
|c Online
|d E-Collections
|t 0
|e ProQuest
|h Other scheme
|
856 |
4 |
0 |
|t 0
|u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=7104088
|y Full text (MCPHS users only)
|