Marine Proteins and Peptides : Biological Activities and Applications.

Food proteins and bioactive peptides play a vital role in the growth and development of the body's structural integrity and regulation, as well as having a variety of other functional properties. Land animal-derived food proteins such as collagen and gelatine carry risks of contamination (such...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Kim, Se-Kwon
Format: Electronic eBook
Language:English
Published: New York : Wiley, 2013
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000ui 4500
001 in00000150261
006 m o d
007 cr un|||||||||
008 130330s2013 nyu o 000 0 eng d
005 20240701204516.8
019 |a 872694642  |a 988791171 
020 |a 9781118375105 
020 |a 1118375106 
029 1 |a DEBBG  |b BV044174206 
029 1 |a DEBSZ  |b 43136978X 
029 1 |a NZ1  |b 16177001 
035 |a (OCoLC)833767117  |z (OCoLC)872694642  |z (OCoLC)988791171 
035 |a (OCoLC)ocn833767117 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDXCP  |d IDEBK  |d OCLCQ  |d SFB  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d CNSPO  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d CSAIL  |d OCLCO  |d OCLCQ  |d Z5A  |d OCLCO  |d VGM  |d OCLCO  |d MERUC  |d OCLCO  |d OCLCQ  |d ZCU  |d OCLCO  |d U3W  |d OCLCA  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCO  |d AU@  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCQ  |d OCLCA  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO  |d OCLCL 
050 4 |a QP551 
060 4 |a QU 55.4 
066 |c (S 
082 0 4 |a 577.7  |a 615.19 
100 1 |a Kim, Se-Kwon. 
245 1 0 |a Marine Proteins and Peptides :  |b Biological Activities and Applications. 
260 |a New York :  |b Wiley,  |c 2013. 
300 |a 1 online resource (818 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a 6.11 Hormone-Regulating Properties. 
505 0 |6 880-01  |a Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Marine-derived Peptides: Development and Health Prospects; 1.1 Introduction; 1.2 Development of Marine Peptides; 1.3 Health Benefits of Marine Peptides; 1.4 Conclusion; References; Chapter 2 Bioactive Proteins and Peptides from Macroalgae, Fish, Shellfish and Marine Processing Waste; 2.1 Introduction; 2.2 Macroalgal, Fish and Shellfish Proteins: Potential Sources of Bioactive Hydrolysates and Peptides; 2.2.1 Macroalgal Proteins; 2.2.2 Fish and Shellfish Proteins. 
505 8 |a 2.3 Enzymatic Hydrolysis of Macroalgal, Fish and Shellfish Processing Waste Proteins: Bioactive Protein Hydrolysates and Peptides2.3.1 In Vitro and In Vivo Cardioprotective Activity; 2.3.2 Oxidative Stress; 2.3.3 Other Biofunctionalities; 2.4 Endogenous Bioactive Peptides from Macroalgae, Fish and Shellfish; 2.5 Bioactive Proteins from Macroalgae, Fish and Shellfish; 2.6 Commercial Products Containing Marine-Derived Bioactive Protein Hydrolysates and Peptides; 2.7 Conclusion; Acknowledgement; References; Chapter 3 Lectins with Varying Specificity and Biological Activity from Marine Bivalves. 
505 8 |a 3.1 Introduction3.1.1 Bivalves; 3.1.1.1 Mussels; 3.1.1.2 Oysters; 3.1.1.3 Clams; 3.1.1.4 Scallops; 3.1.1.5 Cockles; 3.1.2 Innate Immunity of Invertebrates; 3.1.3 Importance of Bivalve Mollusks; 3.2 Lectins; 3.2.1 Bivalve Lectins; 3.2.1.1 C-type Lectins; 3.2.1.2 Galectins; 3.3 Isolation, Molecular Characterization and Carbohydrate Specificity of Bivalve Lectins; 3.4 Biological Functions of Bivalve Lectins; Acknowledgements; References; Chapter 4 Digestive Enzymes from Marine Sources; 4.1 Introduction; 4.2 Biodiversity and Availability; 4.3 Marine Biocatalysts; 4.3.1 Salt and pH Tolerance. 
505 8 |a 4.3.2 Barophilicity4.3.3 Cold Adaptivity; 4.4 Digestive Enzymes; 4.4.1 Digestive Proteases; 4.4.1.1 Acid/Aspartyl Proteases; 4.4.1.2 Serine Proteases; 4.4.1.3 Cysteine or Thiol Proteases; 4.4.1.4 Metalloproteinases; 4.5 Lipases; 4.5.1 Phospholipases; 4.5.2 Chitinolytic Enzymes; 4.5.3 Transglutaminase; 4.6 Industrial Applications; References; Chapter 5 Kamaboko Proteins as a Potential Source of Bioactive Substances; 5.1 Introduction; 5.2 Creation of Healthier and Safer Foods; 5.3 Enzymatic Modification of Food Proteins; 5.4 Kamaboko; 5.5 Chemical Properties of Kamaboko. 
505 8 |a 5.6 Expression of Health the Function of Kamaboko Proteins5.7 Antioxidative Activities of Kamaboko Proteins; 5.8 Angiotensin I-Converting Enzyme-Inhibitory Activities of Kamaboko Proteins; 5.9 Conclusion; References; Chapter 6 Biological Activities of Fish-protein Hydrolysates; 6.1 Introduction; 6.2 Angiotensin I-Converting Enzyme Inhibitors; 6.3 Antioxidative Properties; 6.4 Anticancer Activity; 6.5 Antimicrobial and Antiviral Activity; 6.6 Calcium-Binding Peptides; 6.7 Appetite Suppression; 6.8 Anticoagulant Activity; 6.9 Immunostimulant Activity; 6.10 Hypocholesterolemic Activity. 
520 |a Food proteins and bioactive peptides play a vital role in the growth and development of the body's structural integrity and regulation, as well as having a variety of other functional properties. Land animal-derived food proteins such as collagen and gelatine carry risks of contamination (such as BSE). Marine-derived proteins, which can provide equivalents to collagen and gelatin without the associated risks, are becoming more popular among consumers because of their numerous health beneficial effects. Most marine-derived bioactive peptides are currently underutilized. While fish and shellf. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Proteins  |x Biotechnology. 
650 0 |a Marine pharmacology. 
650 0 |a Food industry and trade. 
650 0 |a Seafood. 
650 1 2 |a Dietary Proteins  |x pharmacology 
650 2 2 |a Aquatic Organisms 
650 2 2 |a Drug Discovery 
650 2 2 |a Food Industry 
650 2 2 |a Peptide Hydrolases  |x pharmacology 
650 2 2 |a Seafood 
758 |i has work:  |a Marine proteins and peptides (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGp8JxCwmw9bk3Y6rVygqP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kim, Se-Kwon.  |t Marine Proteins and Peptides : Biological Activities and Applications.  |d New York : Wiley, ©2013  |z 9781118375068 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1157714  |z Full text (MCPHS users only)  |t 0 
880 0 0 |6 505-01/(S  |g Contents note continued:  |g 12.3.2.  |t Anti-Proliferative Proteins and Peptides --  |g 12.3.3.  |t Anti-Hypertensive Proteins and Peptides --  |g 12.4.  |t Marine-algal Proteins: Potential Sources for Future Applications --  |g 12.4.1.  |t Nutraceutical Value --  |g 12.4.2.  |t Pharmaceutical Value --  |g 12.4.3.  |t Cosmetic Value --  |g 12.5.  |t Conclusion --  |t References --  |g 13.  |t Fish Gelatin: A Versatile Ingredient for the Food and Pharmaceutical Industries /  |r Venkateshwarlu Gudipati --  |g 13.1.  |t Introduction --  |g 13.2.  |t Structural Features of Fish Gelatin --  |g 13.3.  |t Improvement of Functional Properties --  |g 13.4.  |t Applications in the Food Industry --  |g 13.4.1.  |t Gelatin Gels --  |g 13.4.2.  |t Food Emulsions --  |g 13.4.2.1.  |t Oxidatively-Stable Emulsions --  |g 13.4.3.  |t Nutritional Supplements --  |g 13.4.4.  |t Biodegradable Edible Films for Food Packaging --  |g 13.4.4.1.  |t Biocomposite and Nanocomposite Films --  |g 13.4.4.2.  |t Active Films for Food Preservation --  |g 13.5.  |t Applications in the Pharmaceutical Industry --  |g 13.5.1.  |t Fish Gelatin-based Hard and Soft Capsules --  |g 13.5.2.  |t Anti-Oxidative Fish-gelatin Hydrolysates --  |g 13.5.3.  |t Collagen Peptides --  |g 13.5.3.1.  |t Fish-scale Collagen Peptides --  |g 13.5.4.  |t Carriers in Controlled Drug Delivery --  |g 13.6.  |t Conclusion --  |t References --  |g 14.  |t Health Effects of Anti-Oxidative and Anti-Hypertensive Peptides from Marine Resources /  |r Rune Larsen --  |g 14.1.  |t Introduction --  |g 14.1.1.  |t Origin of Peptides --  |g 14.2.  |t Anti-Oxidative Peptides --  |g 14.2.1.  |t Anti-Oxidants and Health Effects --  |g 14.2.1.1.  |t Cardiovascular Diseases --  |g 14.2.1.2.  |t Diabetes Mellitus --  |g 14.2.1.3.  |t Neurodegenerative Disorders --  |g 14.2.1.4.  |t Cancer --  |g 14.2.2.  |t Anti-Oxidant Function --  |g 14.2.2.1.  |t Anti-Oxidative Effects of Proteins, Peptides and Amino Acids --  |g 14.2.3.  |t Evaluation of Anti-Oxidative Capacity --  |g 14.2.3.1.  |t In Vitro Chemical Studies --  |g 14.2.3.2.  |t In Vitro Biological Studies --  |g 14.2.3.3.  |t Animal Studies --  |g 14.2.3.4.  |t Human Clinical Trials --  |g 14.3.  |t Anti-Hypertensive Peptides --  |g 14.3.1.  |t Anti-Hypertensive Peptides and Health --  |g 14.3.2.  |t Function of ACE Inhibitors --  |g 14.3.3.  |t Evaluation of ACE-inhibitory Effect --  |g 14.3.3.1.  |t In Vitro Studies --  |g 14.3.3.2.  |t Animal Studies --  |g 14.3.3.3.  |t Human Clinical Trials --  |g 14.3.4.  |t Comparison of the ACE-inhibitory Capacities of Non-Marine Peptides and Commercial Products --  |g 14.4.  |t Conclusion --  |t References --  |g 15.  |t Potential Novel Therapeutics: Some Biological Aspects of Marine-derived Bioactive Peptides /  |r Suranga P. Kodithuwakku --  |g 15.1.  |t Introduction --  |g 15.2.  |t Marine-derived Proteins and Biopeptides with Anti-Hypertensive Activity --  |g 15.2.1.  |t 'Katsuobushi' Peptides --  |g 15.2.2.  |t Sardine Peptides --  |g 15.2.3.  |t Salmon Peptides --  |g 15.2.4.  |t Mackeral Peptides --  |g 15.2.5.  |t Shrimp Peptides --  |g 15.2.6.  |t Alaska Pollock Peptides --  |g 15.2.7.  |t Yellow-Fin Sole Peptides --  |g 15.2.8.  |t Oyster Peptides --  |g 15.2.9.  |t Tuna Peptides --  |g 15.2.10.  |t Shark Peptides --  |g 15.2.11.  |t Algae Peptides --  |g 15.2.12.  |t Other Marine Peptides with Potent Anti-ace Properties --  |g 15.3.  |t Anti-Cancer Effects of Marine-derived Bioactive Peptides --  |g 15.3.1.  |t Didemin B and Aplidine --  |g 15.3.2.  |t ωμλμϟμτζλ ΚΣΖΖΑ  |g 15.3.3.  |t Hemiasterlin/HTI-286 --  |g 15.3.4.  |t Dolastatins --  |g 15.3.5.  |t Kahalalide F --  |g 15.3.6.  |t Cryptophycins --  |g 15.3.7.  |t Neovastat/AE-941 --  |g 15.3.8.  |t Vitilevuamide --  |g 15.3.9.  |t Thiocoraline --  |g 15.3.10.  |t Jasplakinolide --  |g 15.3.11.  |t Conclusion --  |g 15.4.  |t Anti-Viral Bioactivities of Marine-derived Bioactive Peptides --  |g 15.4.1.  |t Papuamides --  |g 15.4.2.  |t Callipeltin A --  |g 15.4.3.  |t Neamphamide A --  |g 15.4.4.  |t Mirabamides --  |g 15.4.5.  |t Cyanovirin-N --  |g 15.4.6.  |t Microspinosamide --  |g 15.4.7.  |t Griffithsin --  |g 15.4.8.  |t Conclusion --  |g 15.5.  |t The Future of Marine Peptides as Therapeutics --  |t References --  |g 16.  |t Hormone-like Peptides Obtained by Marine-protein Hydrolysis and Their Bioactivities /  |r Oscar Martinez-Alvarez --  |g 16.1.  |t Introduction --  |g 16.2.  |t Growth Hormone-Release Peptides --  |g 16.3.  |t Opioid-Like Peptides --  |g 16.4.  |t Immunomodulating Peptides --  |g 16.5.  |t Glucose Uptake-Stimulating Peptides --  |g 16.6.  |t Secretagogue and Calciotropic Activities --  |g 16.7.  |t Limitations on the use of Hormone-like Peptides as Nutraceuticals --  |g 16.8.  |t Further Development and Research Needs --  |t References --  |g 17.  |t Anti-Microbial Activities of Marine Protein and Peptides /  |r Shiyuan Dong --  |g 17.1.  |t Introduction --  |g 17.2.  |t Preparation, Purification and Characterization --  |g 17.2.1.  |t Preparation and Purification --  |g 17.2.2.  |t Characterization --  |g 17.3.  |t In Vitro Anti-Microbial Studies --  |g 17.3.1.  |t Anti-Microbial Activity --  |g 17.3.2.  |t The Effects of AMPs on Bacterial Cells --  |g 17.4.  |t Anti-Microbial Mechanisms --  |g 17.4.1.  |t Membrane-disruptive Mechanism --  |g 17.4.1.1.  |t 'Barrel-stave' Model --  |g 17.4.1.2.  |t 'Micellar-aggregate' Model --  |g 17.4.1.3.  |t 'Carpet' Model --  |g 17.4.2.  |t Non-membrane-disruptive Mechanism --  |g 17.5.  |t Applications and Prospects in Food Preservation --  |g 17.6.  |t Conclusion --  |t References --  |g 18.  |t Production and Anti-Oxidant Properties of Marine-derived Bioactive Peptides /  |r Qiukuan Wang --  |g 18.1.  |t Introduction --  |g 18.2.  |t Production of Antioxidant Peptides --  |g 18.2.1.  |t Microbial Fermentation --  |g 18.2.2.  |t Enzymatic Hydrolysis --  |g 18.2.2.1.  |t Enzymatic Hydrolysis by Commercial Enzymes --  |g 18.2.2.2.  |t Enzymatic Hydrolysis by Autolysis or Self-prepared Enzymes --  |g 18.2.3.  |t Purification and Identification of Anti-Oxidant Peptides --  |g 18.3.  |t Anti-Oxidant Mechanism and Structure-activity Relationship --  |g 18.3.1.  |t Anti-Oxidant Mechanism of Bioactive Peptides --  |g 18.3.2.  |t Structure-activity Relationship of Anti-Oxidant Peptides --  |g 18.3.2.1.  |t Molecular Weights of Peptides --  |g 18.3.2.2.  |t Hydrophobicity --  |g 18.3.2.3.  |t Amino Acid Composition and Sequence --  |g 18.3.2.4.  |t Histidine-containing Peptides --  |g 18.3.2.5.  |t Peptide Conformation and Amino Acid Configuration --  |g 18.4.  |t Industrial Applications and Perspectives --  |t References --  |g 19.  |t Marine Peptides and Proteins with Cytotoxic and Anti-Tumoural Properties /  |r Fernando Albericio --  |g 19.1.  |t Introduction --  |g 19.2.  |t Current Pipeline of Oncological Drugs Based on Natural Products --  |g 19.3.  |t Current Pipeline of Marine Peptides with Anti-Tumoural Activity --  |g 19.4.  |t Major Biological Sources of Marine Cytotoxic Peptides and Proteins --  |g 19.5.  |t Structural Motifs in Cytotoxic Peptides --  |g 19.6.  |t Cytotoxic Acyclic Peptides --  |g 19.7.  |t Cytotoxic Cyclic Peptides --  |g 19.8.  |t Cytotoxic (Poly)Peptides Obtained by Enzymatic Hydrolysis of Seafood --  |g 19.9.  |t Cytotoxic Polypeptides --  |g 19.10.  |t Conclusion --  |g 19.11.  |t Acknowledgments --  |t References --  |g 20.  |t ACE-inhibitory Activities of Marine Proteins and Peptides /  |r Shiyuan Dong --  |g 20.1.  |t Introduction --  |g 20.2.  |t Determination of ACE-inhibitory Peptide Activity --  |g 20.2.1.  |t In Vitro ACE-Inhibition Assay --  |g 20.2.2.  |t Anti-Hypertensive-Activity Assay In Vivo --  |g 20.3.  |t ACE-inhibitory Peptides from Marine Sources --  |g 20.3.1.  |t ACE-Inhibitory Peptides from Fish Sources --  |g 20.3.2.  |t ACE-Inhibitory Peptides from Sea Cucumber --  |g 20.4.  |t Types of ACE-Inhibitor Peptide --  |g 20.5.  |t Structure-Activity Relationships of ACE-Inhibitory Peptides --  |g 20.6.  |t Conclusion --  |t References --  |g 21.  |t Isolation and Biological Activities of Peptides from Marine Microalgae by Fermentation /  |r Se-Kwon Kim --  |g 21.1.  |t Introduction --  |g 21.2.  |t Utilization of Fermentation to Hydrolyze Protein --  |g 21.3.  |t Microalgae As a Source of Protein --  |g 21.4.  |t Metabolites of Proteolytic Hydrolysis by Fermentation --  |g 21.5.  |t Hydrolyzed Microalgal Peptide Application --  |g 21.6.  |t Conclusion --  |t References --  |g 22.  |t Anti-Oxidant Activities of Marine Peptides from Fish and Shrimp /  |r Zunying Liu --  |g 22.1.  |t Introduction --  |g 22.2.  |t Production, Isolation, and Purification of Anti-Oxidant Peptides --  |g 22.3.  |t Methods Used to Measure Anti-Oxidant Activity --  |g 22.3.1.  |t In Vitro Chemical Assays --  |g 22.3.2.  |t In Vitro Biological Assays and In Vivo Assays --  |g 22.4.  |t Anti-Oxidant Activity of Peptides --  |g 22.4.1.  |t Anti-Oxidant Peptides from Fish Sources --  |g 22.4.2.  |t Anti-Oxidant Peptide from Shrimp Sources --  |g 22.5.  |t Anti-Oxidant Mechanisms of Peptides --  |g 22.6.  |t Applications and Prospects --  |t References --  |g 23.  |t Fish-elastin Hydrolysate: Development and Impact on the Skin and Blood Vessels /  |r Kenji Sato --  |g 23.1.  |t Introduction --  |g 23.2.  |t Starter Materials for Fish-elastin Hydrolysate --  |g 23.3.  |t Preparation of Skipjack-elastin Hydrolysate --  |g 23.4.  |t Impact of Ingestion of Skipjack-elastin Hydrolysate on Skin Conditions --  |g 23.5.  |t Impact of Skipjack-elastin Hydrolysate on Blood Vessels --  |g 23.6.  |t Safety of Skipjack-elastin Hydrolysate --  |g 23.7.  |t Identification of Food-derived Elastin Peptide in Human Blood --  |g 23.8.  |t Effect of Food-derived Elastin-peptide Pro-gly on Cells --  |g 23.9.  |t Conclusion --  |t References --  |g 24.  |t Free Radical-scavenging Activity of Marine Proteins and Peptides /  |r Dai-Nghiep Ngo --  |g 24.1.  |t Introduction --  |g 24.2.  |t Formation of Free Radicals and Methods of Assaying Anti-Oxidant Activity --  |g 24.2.1.  |t Formation of Free Radicals --  |g 24.2.2.  |t Methods of Assaying Anti-Oxidant Activity --  |g 24.2.2.1.  |t Anti-Oxidant Activities Using Chemical Tests --  |g 24.2.2.2.  |t Anti-Oxidant Activities Using ESR Assay --  |g 24.3.  |t Free Radical-scavenging Activity of Marine Proteins and Peptides --  |g 24.4.  |t Conclusion --  |t References --  |g 25.  |t Marine-derived Bioactive Peptides: Their Cardioprotective Activities and Potential Applications /  |r M.T. Rosna --  |g 25.1.  |t Introduction --  |g 25.2.  |t Cardiovascular Diseases and Nutraceuticals --  |g 25.3.  |t Sources of Marine Peptides --  |g 25.4.  |t Development of Marine Bioactive Peptides --  |g 25.5.  |t Oxidative Stress --  |g 25.6.  |t Anti-Hypertensive Activity --  |g 25.7.  |t Anti-Coagulant Activity --  |g 25.8.  |t Conclusion --  |t References --  |g 26.  |t Biological Activities of Marine Bioactive Peptides /  |r Se-Kwon Kim --  |g 26.1.  |t Introduction. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25036236 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25036235 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1157714 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154321 
938 |a YBP Library Services  |b YANK  |n 9984483 
947 |a FLO  |x pq-ebc-base 
999 f f |s 2c09bc1d-e1ba-4132-80eb-a4faafdc7b01  |i af0a8803-2df3-4c27-90ce-e9a7b93aedc4  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1157714  |y Full text (MCPHS users only)