Marine Proteins and Peptides : Biological Activities and Applications.
Food proteins and bioactive peptides play a vital role in the growth and development of the body's structural integrity and regulation, as well as having a variety of other functional properties. Land animal-derived food proteins such as collagen and gelatine carry risks of contamination (such...
Saved in:
Online Access: |
Full text (MCPHS users only) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
New York :
Wiley,
2013
|
Subjects: | |
Local Note: | ProQuest Ebook Central |
MARC
LEADER | 00000cam a2200000ui 4500 | ||
---|---|---|---|
001 | in00000150261 | ||
006 | m o d | ||
007 | cr un||||||||| | ||
008 | 130330s2013 nyu o 000 0 eng d | ||
005 | 20240701204516.8 | ||
019 | |a 872694642 |a 988791171 | ||
020 | |a 9781118375105 | ||
020 | |a 1118375106 | ||
029 | 1 | |a DEBBG |b BV044174206 | |
029 | 1 | |a DEBSZ |b 43136978X | |
029 | 1 | |a NZ1 |b 16177001 | |
035 | |a (OCoLC)833767117 |z (OCoLC)872694642 |z (OCoLC)988791171 | ||
035 | |a (OCoLC)ocn833767117 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d YDXCP |d IDEBK |d OCLCQ |d SFB |d OCLCO |d OCLCF |d OCLCO |d OCLCQ |d OCLCO |d CNSPO |d DEBSZ |d OCLCO |d OCLCQ |d OCLCO |d CSAIL |d OCLCO |d OCLCQ |d Z5A |d OCLCO |d VGM |d OCLCO |d MERUC |d OCLCO |d OCLCQ |d ZCU |d OCLCO |d U3W |d OCLCA |d ICG |d INT |d OCLCQ |d DKC |d OCLCO |d AU@ |d OCLCO |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCA |d OCLCQ |d OCLCA |d OCLCO |d OCLCQ |d OCL |d OCLCO |d OCLCL | ||
050 | 4 | |a QP551 | |
060 | 4 | |a QU 55.4 | |
066 | |c (S | ||
082 | 0 | 4 | |a 577.7 |a 615.19 |
100 | 1 | |a Kim, Se-Kwon. | |
245 | 1 | 0 | |a Marine Proteins and Peptides : |b Biological Activities and Applications. |
260 | |a New York : |b Wiley, |c 2013. | ||
300 | |a 1 online resource (818 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a 6.11 Hormone-Regulating Properties. | ||
505 | 0 | |6 880-01 |a Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Marine-derived Peptides: Development and Health Prospects; 1.1 Introduction; 1.2 Development of Marine Peptides; 1.3 Health Benefits of Marine Peptides; 1.4 Conclusion; References; Chapter 2 Bioactive Proteins and Peptides from Macroalgae, Fish, Shellfish and Marine Processing Waste; 2.1 Introduction; 2.2 Macroalgal, Fish and Shellfish Proteins: Potential Sources of Bioactive Hydrolysates and Peptides; 2.2.1 Macroalgal Proteins; 2.2.2 Fish and Shellfish Proteins. | |
505 | 8 | |a 2.3 Enzymatic Hydrolysis of Macroalgal, Fish and Shellfish Processing Waste Proteins: Bioactive Protein Hydrolysates and Peptides2.3.1 In Vitro and In Vivo Cardioprotective Activity; 2.3.2 Oxidative Stress; 2.3.3 Other Biofunctionalities; 2.4 Endogenous Bioactive Peptides from Macroalgae, Fish and Shellfish; 2.5 Bioactive Proteins from Macroalgae, Fish and Shellfish; 2.6 Commercial Products Containing Marine-Derived Bioactive Protein Hydrolysates and Peptides; 2.7 Conclusion; Acknowledgement; References; Chapter 3 Lectins with Varying Specificity and Biological Activity from Marine Bivalves. | |
505 | 8 | |a 3.1 Introduction3.1.1 Bivalves; 3.1.1.1 Mussels; 3.1.1.2 Oysters; 3.1.1.3 Clams; 3.1.1.4 Scallops; 3.1.1.5 Cockles; 3.1.2 Innate Immunity of Invertebrates; 3.1.3 Importance of Bivalve Mollusks; 3.2 Lectins; 3.2.1 Bivalve Lectins; 3.2.1.1 C-type Lectins; 3.2.1.2 Galectins; 3.3 Isolation, Molecular Characterization and Carbohydrate Specificity of Bivalve Lectins; 3.4 Biological Functions of Bivalve Lectins; Acknowledgements; References; Chapter 4 Digestive Enzymes from Marine Sources; 4.1 Introduction; 4.2 Biodiversity and Availability; 4.3 Marine Biocatalysts; 4.3.1 Salt and pH Tolerance. | |
505 | 8 | |a 4.3.2 Barophilicity4.3.3 Cold Adaptivity; 4.4 Digestive Enzymes; 4.4.1 Digestive Proteases; 4.4.1.1 Acid/Aspartyl Proteases; 4.4.1.2 Serine Proteases; 4.4.1.3 Cysteine or Thiol Proteases; 4.4.1.4 Metalloproteinases; 4.5 Lipases; 4.5.1 Phospholipases; 4.5.2 Chitinolytic Enzymes; 4.5.3 Transglutaminase; 4.6 Industrial Applications; References; Chapter 5 Kamaboko Proteins as a Potential Source of Bioactive Substances; 5.1 Introduction; 5.2 Creation of Healthier and Safer Foods; 5.3 Enzymatic Modification of Food Proteins; 5.4 Kamaboko; 5.5 Chemical Properties of Kamaboko. | |
505 | 8 | |a 5.6 Expression of Health the Function of Kamaboko Proteins5.7 Antioxidative Activities of Kamaboko Proteins; 5.8 Angiotensin I-Converting Enzyme-Inhibitory Activities of Kamaboko Proteins; 5.9 Conclusion; References; Chapter 6 Biological Activities of Fish-protein Hydrolysates; 6.1 Introduction; 6.2 Angiotensin I-Converting Enzyme Inhibitors; 6.3 Antioxidative Properties; 6.4 Anticancer Activity; 6.5 Antimicrobial and Antiviral Activity; 6.6 Calcium-Binding Peptides; 6.7 Appetite Suppression; 6.8 Anticoagulant Activity; 6.9 Immunostimulant Activity; 6.10 Hypocholesterolemic Activity. | |
520 | |a Food proteins and bioactive peptides play a vital role in the growth and development of the body's structural integrity and regulation, as well as having a variety of other functional properties. Land animal-derived food proteins such as collagen and gelatine carry risks of contamination (such as BSE). Marine-derived proteins, which can provide equivalents to collagen and gelatin without the associated risks, are becoming more popular among consumers because of their numerous health beneficial effects. Most marine-derived bioactive peptides are currently underutilized. While fish and shellf. | ||
588 | 0 | |a Print version record. | |
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Proteins |x Biotechnology. | |
650 | 0 | |a Marine pharmacology. | |
650 | 0 | |a Food industry and trade. | |
650 | 0 | |a Seafood. | |
650 | 1 | 2 | |a Dietary Proteins |x pharmacology |
650 | 2 | 2 | |a Aquatic Organisms |
650 | 2 | 2 | |a Drug Discovery |
650 | 2 | 2 | |a Food Industry |
650 | 2 | 2 | |a Peptide Hydrolases |x pharmacology |
650 | 2 | 2 | |a Seafood |
758 | |i has work: |a Marine proteins and peptides (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGp8JxCwmw9bk3Y6rVygqP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Kim, Se-Kwon. |t Marine Proteins and Peptides : Biological Activities and Applications. |d New York : Wiley, ©2013 |z 9781118375068 |
852 | |b E-Collections |h ProQuest | ||
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1157714 |z Full text (MCPHS users only) |t 0 |
880 | 0 | 0 | |6 505-01/(S |g Contents note continued: |g 12.3.2. |t Anti-Proliferative Proteins and Peptides -- |g 12.3.3. |t Anti-Hypertensive Proteins and Peptides -- |g 12.4. |t Marine-algal Proteins: Potential Sources for Future Applications -- |g 12.4.1. |t Nutraceutical Value -- |g 12.4.2. |t Pharmaceutical Value -- |g 12.4.3. |t Cosmetic Value -- |g 12.5. |t Conclusion -- |t References -- |g 13. |t Fish Gelatin: A Versatile Ingredient for the Food and Pharmaceutical Industries / |r Venkateshwarlu Gudipati -- |g 13.1. |t Introduction -- |g 13.2. |t Structural Features of Fish Gelatin -- |g 13.3. |t Improvement of Functional Properties -- |g 13.4. |t Applications in the Food Industry -- |g 13.4.1. |t Gelatin Gels -- |g 13.4.2. |t Food Emulsions -- |g 13.4.2.1. |t Oxidatively-Stable Emulsions -- |g 13.4.3. |t Nutritional Supplements -- |g 13.4.4. |t Biodegradable Edible Films for Food Packaging -- |g 13.4.4.1. |t Biocomposite and Nanocomposite Films -- |g 13.4.4.2. |t Active Films for Food Preservation -- |g 13.5. |t Applications in the Pharmaceutical Industry -- |g 13.5.1. |t Fish Gelatin-based Hard and Soft Capsules -- |g 13.5.2. |t Anti-Oxidative Fish-gelatin Hydrolysates -- |g 13.5.3. |t Collagen Peptides -- |g 13.5.3.1. |t Fish-scale Collagen Peptides -- |g 13.5.4. |t Carriers in Controlled Drug Delivery -- |g 13.6. |t Conclusion -- |t References -- |g 14. |t Health Effects of Anti-Oxidative and Anti-Hypertensive Peptides from Marine Resources / |r Rune Larsen -- |g 14.1. |t Introduction -- |g 14.1.1. |t Origin of Peptides -- |g 14.2. |t Anti-Oxidative Peptides -- |g 14.2.1. |t Anti-Oxidants and Health Effects -- |g 14.2.1.1. |t Cardiovascular Diseases -- |g 14.2.1.2. |t Diabetes Mellitus -- |g 14.2.1.3. |t Neurodegenerative Disorders -- |g 14.2.1.4. |t Cancer -- |g 14.2.2. |t Anti-Oxidant Function -- |g 14.2.2.1. |t Anti-Oxidative Effects of Proteins, Peptides and Amino Acids -- |g 14.2.3. |t Evaluation of Anti-Oxidative Capacity -- |g 14.2.3.1. |t In Vitro Chemical Studies -- |g 14.2.3.2. |t In Vitro Biological Studies -- |g 14.2.3.3. |t Animal Studies -- |g 14.2.3.4. |t Human Clinical Trials -- |g 14.3. |t Anti-Hypertensive Peptides -- |g 14.3.1. |t Anti-Hypertensive Peptides and Health -- |g 14.3.2. |t Function of ACE Inhibitors -- |g 14.3.3. |t Evaluation of ACE-inhibitory Effect -- |g 14.3.3.1. |t In Vitro Studies -- |g 14.3.3.2. |t Animal Studies -- |g 14.3.3.3. |t Human Clinical Trials -- |g 14.3.4. |t Comparison of the ACE-inhibitory Capacities of Non-Marine Peptides and Commercial Products -- |g 14.4. |t Conclusion -- |t References -- |g 15. |t Potential Novel Therapeutics: Some Biological Aspects of Marine-derived Bioactive Peptides / |r Suranga P. Kodithuwakku -- |g 15.1. |t Introduction -- |g 15.2. |t Marine-derived Proteins and Biopeptides with Anti-Hypertensive Activity -- |g 15.2.1. |t 'Katsuobushi' Peptides -- |g 15.2.2. |t Sardine Peptides -- |g 15.2.3. |t Salmon Peptides -- |g 15.2.4. |t Mackeral Peptides -- |g 15.2.5. |t Shrimp Peptides -- |g 15.2.6. |t Alaska Pollock Peptides -- |g 15.2.7. |t Yellow-Fin Sole Peptides -- |g 15.2.8. |t Oyster Peptides -- |g 15.2.9. |t Tuna Peptides -- |g 15.2.10. |t Shark Peptides -- |g 15.2.11. |t Algae Peptides -- |g 15.2.12. |t Other Marine Peptides with Potent Anti-ace Properties -- |g 15.3. |t Anti-Cancer Effects of Marine-derived Bioactive Peptides -- |g 15.3.1. |t Didemin B and Aplidine -- |g 15.3.2. |t ωμλμϟμτζλ ΚΣΖΖΑ |g 15.3.3. |t Hemiasterlin/HTI-286 -- |g 15.3.4. |t Dolastatins -- |g 15.3.5. |t Kahalalide F -- |g 15.3.6. |t Cryptophycins -- |g 15.3.7. |t Neovastat/AE-941 -- |g 15.3.8. |t Vitilevuamide -- |g 15.3.9. |t Thiocoraline -- |g 15.3.10. |t Jasplakinolide -- |g 15.3.11. |t Conclusion -- |g 15.4. |t Anti-Viral Bioactivities of Marine-derived Bioactive Peptides -- |g 15.4.1. |t Papuamides -- |g 15.4.2. |t Callipeltin A -- |g 15.4.3. |t Neamphamide A -- |g 15.4.4. |t Mirabamides -- |g 15.4.5. |t Cyanovirin-N -- |g 15.4.6. |t Microspinosamide -- |g 15.4.7. |t Griffithsin -- |g 15.4.8. |t Conclusion -- |g 15.5. |t The Future of Marine Peptides as Therapeutics -- |t References -- |g 16. |t Hormone-like Peptides Obtained by Marine-protein Hydrolysis and Their Bioactivities / |r Oscar Martinez-Alvarez -- |g 16.1. |t Introduction -- |g 16.2. |t Growth Hormone-Release Peptides -- |g 16.3. |t Opioid-Like Peptides -- |g 16.4. |t Immunomodulating Peptides -- |g 16.5. |t Glucose Uptake-Stimulating Peptides -- |g 16.6. |t Secretagogue and Calciotropic Activities -- |g 16.7. |t Limitations on the use of Hormone-like Peptides as Nutraceuticals -- |g 16.8. |t Further Development and Research Needs -- |t References -- |g 17. |t Anti-Microbial Activities of Marine Protein and Peptides / |r Shiyuan Dong -- |g 17.1. |t Introduction -- |g 17.2. |t Preparation, Purification and Characterization -- |g 17.2.1. |t Preparation and Purification -- |g 17.2.2. |t Characterization -- |g 17.3. |t In Vitro Anti-Microbial Studies -- |g 17.3.1. |t Anti-Microbial Activity -- |g 17.3.2. |t The Effects of AMPs on Bacterial Cells -- |g 17.4. |t Anti-Microbial Mechanisms -- |g 17.4.1. |t Membrane-disruptive Mechanism -- |g 17.4.1.1. |t 'Barrel-stave' Model -- |g 17.4.1.2. |t 'Micellar-aggregate' Model -- |g 17.4.1.3. |t 'Carpet' Model -- |g 17.4.2. |t Non-membrane-disruptive Mechanism -- |g 17.5. |t Applications and Prospects in Food Preservation -- |g 17.6. |t Conclusion -- |t References -- |g 18. |t Production and Anti-Oxidant Properties of Marine-derived Bioactive Peptides / |r Qiukuan Wang -- |g 18.1. |t Introduction -- |g 18.2. |t Production of Antioxidant Peptides -- |g 18.2.1. |t Microbial Fermentation -- |g 18.2.2. |t Enzymatic Hydrolysis -- |g 18.2.2.1. |t Enzymatic Hydrolysis by Commercial Enzymes -- |g 18.2.2.2. |t Enzymatic Hydrolysis by Autolysis or Self-prepared Enzymes -- |g 18.2.3. |t Purification and Identification of Anti-Oxidant Peptides -- |g 18.3. |t Anti-Oxidant Mechanism and Structure-activity Relationship -- |g 18.3.1. |t Anti-Oxidant Mechanism of Bioactive Peptides -- |g 18.3.2. |t Structure-activity Relationship of Anti-Oxidant Peptides -- |g 18.3.2.1. |t Molecular Weights of Peptides -- |g 18.3.2.2. |t Hydrophobicity -- |g 18.3.2.3. |t Amino Acid Composition and Sequence -- |g 18.3.2.4. |t Histidine-containing Peptides -- |g 18.3.2.5. |t Peptide Conformation and Amino Acid Configuration -- |g 18.4. |t Industrial Applications and Perspectives -- |t References -- |g 19. |t Marine Peptides and Proteins with Cytotoxic and Anti-Tumoural Properties / |r Fernando Albericio -- |g 19.1. |t Introduction -- |g 19.2. |t Current Pipeline of Oncological Drugs Based on Natural Products -- |g 19.3. |t Current Pipeline of Marine Peptides with Anti-Tumoural Activity -- |g 19.4. |t Major Biological Sources of Marine Cytotoxic Peptides and Proteins -- |g 19.5. |t Structural Motifs in Cytotoxic Peptides -- |g 19.6. |t Cytotoxic Acyclic Peptides -- |g 19.7. |t Cytotoxic Cyclic Peptides -- |g 19.8. |t Cytotoxic (Poly)Peptides Obtained by Enzymatic Hydrolysis of Seafood -- |g 19.9. |t Cytotoxic Polypeptides -- |g 19.10. |t Conclusion -- |g 19.11. |t Acknowledgments -- |t References -- |g 20. |t ACE-inhibitory Activities of Marine Proteins and Peptides / |r Shiyuan Dong -- |g 20.1. |t Introduction -- |g 20.2. |t Determination of ACE-inhibitory Peptide Activity -- |g 20.2.1. |t In Vitro ACE-Inhibition Assay -- |g 20.2.2. |t Anti-Hypertensive-Activity Assay In Vivo -- |g 20.3. |t ACE-inhibitory Peptides from Marine Sources -- |g 20.3.1. |t ACE-Inhibitory Peptides from Fish Sources -- |g 20.3.2. |t ACE-Inhibitory Peptides from Sea Cucumber -- |g 20.4. |t Types of ACE-Inhibitor Peptide -- |g 20.5. |t Structure-Activity Relationships of ACE-Inhibitory Peptides -- |g 20.6. |t Conclusion -- |t References -- |g 21. |t Isolation and Biological Activities of Peptides from Marine Microalgae by Fermentation / |r Se-Kwon Kim -- |g 21.1. |t Introduction -- |g 21.2. |t Utilization of Fermentation to Hydrolyze Protein -- |g 21.3. |t Microalgae As a Source of Protein -- |g 21.4. |t Metabolites of Proteolytic Hydrolysis by Fermentation -- |g 21.5. |t Hydrolyzed Microalgal Peptide Application -- |g 21.6. |t Conclusion -- |t References -- |g 22. |t Anti-Oxidant Activities of Marine Peptides from Fish and Shrimp / |r Zunying Liu -- |g 22.1. |t Introduction -- |g 22.2. |t Production, Isolation, and Purification of Anti-Oxidant Peptides -- |g 22.3. |t Methods Used to Measure Anti-Oxidant Activity -- |g 22.3.1. |t In Vitro Chemical Assays -- |g 22.3.2. |t In Vitro Biological Assays and In Vivo Assays -- |g 22.4. |t Anti-Oxidant Activity of Peptides -- |g 22.4.1. |t Anti-Oxidant Peptides from Fish Sources -- |g 22.4.2. |t Anti-Oxidant Peptide from Shrimp Sources -- |g 22.5. |t Anti-Oxidant Mechanisms of Peptides -- |g 22.6. |t Applications and Prospects -- |t References -- |g 23. |t Fish-elastin Hydrolysate: Development and Impact on the Skin and Blood Vessels / |r Kenji Sato -- |g 23.1. |t Introduction -- |g 23.2. |t Starter Materials for Fish-elastin Hydrolysate -- |g 23.3. |t Preparation of Skipjack-elastin Hydrolysate -- |g 23.4. |t Impact of Ingestion of Skipjack-elastin Hydrolysate on Skin Conditions -- |g 23.5. |t Impact of Skipjack-elastin Hydrolysate on Blood Vessels -- |g 23.6. |t Safety of Skipjack-elastin Hydrolysate -- |g 23.7. |t Identification of Food-derived Elastin Peptide in Human Blood -- |g 23.8. |t Effect of Food-derived Elastin-peptide Pro-gly on Cells -- |g 23.9. |t Conclusion -- |t References -- |g 24. |t Free Radical-scavenging Activity of Marine Proteins and Peptides / |r Dai-Nghiep Ngo -- |g 24.1. |t Introduction -- |g 24.2. |t Formation of Free Radicals and Methods of Assaying Anti-Oxidant Activity -- |g 24.2.1. |t Formation of Free Radicals -- |g 24.2.2. |t Methods of Assaying Anti-Oxidant Activity -- |g 24.2.2.1. |t Anti-Oxidant Activities Using Chemical Tests -- |g 24.2.2.2. |t Anti-Oxidant Activities Using ESR Assay -- |g 24.3. |t Free Radical-scavenging Activity of Marine Proteins and Peptides -- |g 24.4. |t Conclusion -- |t References -- |g 25. |t Marine-derived Bioactive Peptides: Their Cardioprotective Activities and Potential Applications / |r M.T. Rosna -- |g 25.1. |t Introduction -- |g 25.2. |t Cardiovascular Diseases and Nutraceuticals -- |g 25.3. |t Sources of Marine Peptides -- |g 25.4. |t Development of Marine Bioactive Peptides -- |g 25.5. |t Oxidative Stress -- |g 25.6. |t Anti-Hypertensive Activity -- |g 25.7. |t Anti-Coagulant Activity -- |g 25.8. |t Conclusion -- |t References -- |g 26. |t Biological Activities of Marine Bioactive Peptides / |r Se-Kwon Kim -- |g 26.1. |t Introduction. |
938 | |a Askews and Holts Library Services |b ASKH |n AH25036236 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25036235 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1157714 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154321 | ||
938 | |a YBP Library Services |b YANK |n 9984483 | ||
947 | |a FLO |x pq-ebc-base | ||
999 | f | f | |s 2c09bc1d-e1ba-4132-80eb-a4faafdc7b01 |i af0a8803-2df3-4c27-90ce-e9a7b93aedc4 |t 0 |
952 | f | f | |a Massachusetts College of Pharmacy and Health Sciences |b Online |c Online |d E-Collections |t 0 |e ProQuest |h Other scheme |
856 | 4 | 0 | |t 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1157714 |y Full text (MCPHS users only) |