Metaheuristic optimization for the design of automatic control laws /

The classic approach in Automatic Control relies on the use of simplified models of the systems and reformulations of the specifications. In this framework, the control law can be computed using deterministic algorithms. However, this approach fails when the system is too complex for its model to be...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Sandou, Guillaume
Format: Electronic eBook
Language:English
Published: Hoboken, NJ : ISTE Ltd/John Wiley and Sons Inc, 2013
Series:Focus series in automation & control.
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000151969
006 m o d
007 cr cn|||||||||
008 130612s2013 njua ob 001 0 eng d
005 20240701204644.1
019 |a 961664305  |a 962570019  |a 1058626970  |a 1162057864 
020 |a 9781118796481  |q (e-book) 
020 |a 1118796489  |q (e-book) 
020 |a 1848215908 
020 |a 9781848215900 
020 |a 1118796519 
020 |a 9781118796511 
020 |a 1118796357 
020 |a 9781118796351 
020 |z 9781848215900 
029 1 |a AU@  |b 000053042268 
029 1 |a DEBBG  |b BV041632616 
029 1 |a DEBBG  |b BV044063098 
029 1 |a DEBSZ  |b 405685912 
035 |a (OCoLC)861529063  |z (OCoLC)961664305  |z (OCoLC)962570019  |z (OCoLC)1058626970  |z (OCoLC)1162057864 
035 |a (OCoLC)ocn861529063 
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d OCLCF  |d COO  |d COCUF  |d MOR  |d PIFPO  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d NRAMU  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d HS0  |d OCLCQ  |d VLY  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB 
050 4 |a QA402.5  |b .S26 2013eb 
082 0 4 |a 519.6 
100 1 |a Sandou, Guillaume. 
245 1 0 |a Metaheuristic optimization for the design of automatic control laws /  |c Guillaume Sandou. 
264 1 |a Hoboken, NJ :  |b ISTE Ltd/John Wiley and Sons Inc,  |c 2013. 
300 |a 1 online resource (140 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Focus automation and control series,  |x 2051-2481 
504 |a Includes bibliographical references and index. 
505 0 |a Cover -- Title Page -- Contents -- Preface -- Chapter 1. Introduction And Motivations -- 1.1. Introduction: automatic control and optimization -- 1.2. Motivations to use metaheuristic algorithms -- 1.3. Organization of the book -- Chapter 2. Symbolic Regression 
505 8 |a 2.1. Identification problematic and brief state of the art 2.2. Problem statement and modeling -- 2.2.1. Problem statement -- 2.2.2. Problem modeling -- 2.3. Ant colony optimization -- 2.3.1. Ant colony social behavior -- 2.3.2. Ant colony optimization 
505 8 |a 2.3.3. Ant colony for the identification of nonlinear functions with unknown structure 2.4. Numerical results -- 2.4.1. Parameter settings -- 2.4.2. Experimental results -- 2.5. Discussion -- 2.5.1. Considering real variables -- 2.5.2. Local minima 
505 8 |a 2.5.3. Identification of nonlinear dynamical systems 2.6. A note on genetic algorithms for symbolic regression -- 2.7. Conclusions -- Chapter 3. Pid Design Using Particle Swarm Optimization -- 3.1. Introduction -- 3.2. Controller tuning: a hard optimization problem 
505 8 |a 3.2.1. Problem framework 3.2.2. Expressions of time domain specifications -- 3.2.3. Expressions of frequency domain specifications -- 3.2.4. Analysis of the optimization problem -- 3.3. Particle swarm optimization implementation -- 3.4. PID tuning optimization 
520 |a The classic approach in Automatic Control relies on the use of simplified models of the systems and reformulations of the specifications. In this framework, the control law can be computed using deterministic algorithms. However, this approach fails when the system is too complex for its model to be sufficiently simplified, when the designer has many constraints to take into account, or when the goal is not only to design a control but also to optimize it. This book presents a new trend in Automatic Control with the use of metaheuristic algorithms. These kinds of algorithm can optimize any cr. 
546 |a English. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical optimization. 
650 0 |a Heuristic algorithms. 
758 |i has work:  |a Metaheuristic Optimization for the Design of Automatic Control Laws [electronic resource] (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYRMDmbPx7ktfQ8dty7Cgq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Sandou, Guillaume.  |t Metaheuristic optimization for the design of automatic control laws.  |d Hoboken, NJ : ISTE Ltd/John Wiley and Sons Inc, 2013  |h x, 128 pages  |k Focus automation and control series  |x 2051-2481  |z 9781848215900  |w (DLC) 17775309 
830 0 |a Focus series in automation & control. 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1376955  |z Full text (MCPHS users only)  |t 0 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1376955 
938 |a ebrary  |b EBRY  |n ebr10756812 
947 |a FLO  |x pq-ebc-base 
999 f f |s 505f1fe8-35a9-473c-8f25-b6dbcf7e59fa  |i f12137b9-8e8f-4d57-84cd-3296930c4c3d  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1376955  |y Full text (MCPHS users only)