Least Squares Support Vector Machines.
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors expla...
Saved in:
Online Access: |
Full text (MCPHS users only) |
---|---|
Main Author: | |
Other Authors: | , , , |
Format: | Electronic eBook |
Language: | English |
Published: |
Singapore :
World Scientific Publishing Company,
2002
|
Subjects: | |
Local Note: | ProQuest Ebook Central |
MARC
LEADER | 00000cam a2200000uu 4500 | ||
---|---|---|---|
001 | in00000152037 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 140501s2002 si o 000 0 eng d | ||
005 | 20240701204646.9 | ||
019 | |a 1086442172 | ||
020 | |a 9789812776655 | ||
020 | |a 9812776656 | ||
020 | |z 9812381511 |q (alk. paper) | ||
020 | |z 9789812381514 | ||
029 | 1 | |a AU@ |b 000055974314 | |
029 | 1 | |a DEBBG |b BV044179566 | |
029 | 1 | |a DEBSZ |b 405248717 | |
035 | |a (OCoLC)879025543 |z (OCoLC)1086442172 | ||
035 | |a (OCoLC)ocn879025543 | ||
040 | |a MHW |b eng |e pn |c MHW |d EBLCP |d DEBSZ |d OCLCQ |d ZCU |d MERUC |d U3W |d OCLCO |d OCLCF |d ICG |d INT |d AU@ |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d LEAUB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
050 | 4 | |a Q325.5 |b .L45 2002 | |
082 | 0 | 4 | |a 006.31 |
100 | 1 | |a Suykens, Johan A. K. | |
245 | 1 | 0 | |a Least Squares Support Vector Machines. |
260 | |a Singapore : |b World Scientific Publishing Company, |c 2002. | ||
300 | |a 1 online resource (308 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 269-286) and index. | ||
505 | 0 | |a Preface ; Chapter 1 Introduction ; 1.1 Multilayer perceptron neural networks ; 1.2 Regression and classification ; 1.3 Learning and generalization ; 1.3.1 Weight decay and effective number of parameters ; 1.3.2 Ridge regression ; 1.3.3 Bayesian learning. | |
505 | 8 | |a 1.4 Principles of pattern recognition 1.4.1 Bayes rule and optimal classifier under Gaussian assumptions ; 1.4.2 Receiver operating characteristic ; 1.5 Dimensionality reduction methods ; 1.6 Parametric versus non-parametric approaches and RBF networks. | |
505 | 8 | |a 1.7 Feedforward versus recurrent network models Chapter 2 Support Vector Machines ; 2.1 Maximal margin classification and linear SVMs ; 2.1.1 Margin ; 2.1.2 Linear SVM classifier: separable case ; 2.1.3 Linear SVM classifier: non-separable case ; 2.2 Kernel trick and Mercer condition. | |
505 | 8 | |a 2.3 Nonlinear SVM classifiers 2.4 VC theory and structural risk minimization ; 2.4.1 Empirical risk versus generalization error ; 2.4.2 Structural risk minimization ; 2.5 SVMs for function estimation ; 2.5.1 SVM for linear function estimation. | |
505 | 8 | |a 2.5.2 SVM for nonlinear function estimation 2.5.3 VC bound on generalization error ; 2.6 Modifications and extensions ; 2.6.1 Kernels ; 2.6.2 Extension to other convex cost functions ; 2.6.3 Algorithms ; 2.6.4 Parametric versus non-parametric approaches. | |
520 | |a This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA. | ||
588 | 0 | |a Print version record. | |
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Algorithms. | |
650 | 0 | |a Kernel functions. | |
650 | 0 | |a Least squares. | |
650 | 0 | |a Machine learning. | |
650 | 2 | |a Algorithms | |
650 | 2 | |a Machine Learning | |
650 | 7 | |a algorithms. |2 aat | |
700 | 1 | |a Gestel, Tony van. | |
700 | 1 | |a De Brabanter, Jos. | |
700 | 1 | |a De Moor, Bart. | |
700 | 1 | |a Vandewalle, Joos. | |
758 | |i has work: |a Least squares support vector machines (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGp4mhtFFGRBTPVyc6CPHy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789812381514 |
852 | |b E-Collections |h ProQuest | ||
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1681619 |z Full text (MCPHS users only) |t 0 |
938 | |a EBL - Ebook Library |b EBLB |n EBL1681619 | ||
947 | |a FLO |x pq-ebc-base | ||
999 | f | f | |s 3c7d9925-7a6d-4d32-a5ae-6a74a8190bc6 |i 073310f8-fa3f-48ff-ab91-e5d71da41b81 |t 0 |
952 | f | f | |a Massachusetts College of Pharmacy and Health Sciences |b Online |c Online |d E-Collections |t 0 |e ProQuest |h Other scheme |
856 | 4 | 0 | |t 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1681619 |y Full text (MCPHS users only) |