Fundamentals of Object Tracking.
Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.
Saved in:
Online Access: |
Full text (MCPHS users only) |
---|---|
Main Author: | |
Other Authors: | , , |
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge :
Cambridge University Press,
2011
|
Series: | Cambridge books online.
|
Subjects: | |
Local Note: | ProQuest Ebook Central |
MARC
LEADER | 00000cam a2200000uu 4500 | ||
---|---|---|---|
001 | in00000177141 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 120402s2011 enk ob 001 0 eng d | ||
005 | 20240701210655.2 | ||
019 | |a 776967759 |a 798796700 | ||
020 | |a 9781139009324 | ||
020 | |a 113900932X | ||
020 | |a 9780511975837 |q (ebook) | ||
020 | |a 051197583X |q (ebook) | ||
020 | |a 9780521876285 |q (hardback) | ||
020 | |a 0521876281 |q (hardback) | ||
029 | 1 | |a AU@ |b 000052895848 | |
029 | 1 | |a DEBSZ |b 379318571 | |
029 | 1 | |a DEBSZ |b 445569972 | |
035 | |a (OCoLC)782857899 |z (OCoLC)776967759 |z (OCoLC)798796700 | ||
035 | |a (OCoLC)ocn782857899 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d AUD |d WRJ |d COO |d CDX |d OCLCO |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d YDXCP |d OCLCQ |d CNCGM |d Z5A |d UAB |d OCLCQ |d OCLCA |d OCLCQ |d INT |d MERUC |d ZCU |d ICG |d OCLCQ |d TKN |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d S9I |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d SXB | ||
050 | 4 | |a QA402.5.F86 2011 | |
072 | 7 | |a TJFM |2 bicssc | |
082 | 0 | 4 | |a 518.1 |a 519.7 |
084 | |a MAT017000 |2 bisacsh | ||
100 | 1 | |a Challa, Subhash. | |
245 | 1 | 0 | |a Fundamentals of Object Tracking. |
260 | |a Cambridge : |b Cambridge University Press, |c 2011. | ||
300 | |a 1 online resource (390 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a 4.2.1 The nearest neighbor filter equations. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Cover; FUNDAMENTALS OF OBJECT TRACKING; Title; Copyright; Contents; Preface; 1: Introduction to object tracking; 1.1 Overview of object tracking problems; 1.1.1 Air space monitoring; 1.1.2 Video surveillance; 1.1.3 Weather monitoring; 1.1.4 Cell biology; 1.2 Bayesian reasoning with application to object tracking; 1.2.1 Bayes' theorem; 1.2.2 Application to object tracking; 1.3 Recursive Bayesian solution for object tracking; 1.3.1 The generalized object dynamics equation; 1.3.2 The generalized sensor measurement equation; 1.3.3 Generalized object state prediction and conditional densities. | |
505 | 8 | |a 1.3.4 Generalized object state prediction and update1.3.5 Generalized object state filtering; 1.3.6 Generalized object state estimates; 1.4 Summary; 2: Filtering theory and non-maneuvering object tracking; 2.1 The optimal Bayesian filter; 2.1.1 Object dynamics and sensor measurement equations; 2.1.2 The optimal non-maneuvering object tracking filter recursion; 2.2 The Kalman filter; 2.2.1 Derivation of the Kalman filter; 2.2.2 The Kalman filter equations; 2.3 The extended Kalman filter; 2.3.1 Linear filter approximations; 2.3.2 The extended Kalman filter equations. | |
505 | 8 | |a 2.4 The unscented Kalman filter2.4.1 The unscented transformation; 2.4.2 The unscented Kalman filter algorithm; 2.5 The point mass filter; 2.5.1 Transition and prediction densities; 2.5.2 The likelihood function and normalization factor; 2.5.3 Conditional density; 2.5.4 The point mass filter equations; 2.6 The particle filter; 2.6.1 The particle filter for single-object tracking; 2.6.2 The OID-PF for single-object tracking; 2.6.3 Auxiliary bootstrap filter for single-object tracking; 2.6.4 Extended Kalman auxiliary particle filter for single-object tracking; 2.7 Performance bounds. | |
505 | 8 | |a 2.8 Illustrative exampleAngle tracking; 2.9 Summary; 3: Maneuvering object tracking; 3.1 Modeling for maneuvering object tracking; 3.1.1 Single model via state augmentation; 3.1.2 Multiple-model-based approaches; 3.2 The optimal Bayesian filter; 3.2.1 Process, measurement and noise models; 3.2.2 The conditional density and the conditional model probability; 3.2.3 Optimal estimation; 3.3 Generalized pseudo-Bayesian filters; 3.3.1 Generalized pseudo-Bayesian filter of order 1; 3.3.2 Generalized pseudo-Bayesian filter of order 2; 3.4 Interacting multiple model filter. | |
505 | 8 | |a 3.4.1 The IMM filter equations3.5 Particle filters for maneuvering object tracking; 3.5.1 Bootstrap filter for maneuvering object tracking; 3.5.2 Auxiliary bootstrap filter for maneuvering object tracking; 3.5.3 Extended Kalman auxiliary particle filter for maneuvering object tracking; 3.6 Performance bounds; 3.7 Illustrative example; 3.8 Summary; 4: Single-object tracking in clutter; 4.1 The optimal Bayesian filter; 4.1.1 Object dynamics, sensor measurement and noise models; 4.1.2 Conditional density; 4.1.3 Optimal estimation; 4.2 The nearest neighbor filter. | |
520 | |a Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples. | ||
588 | 0 | |a Print version record. | |
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Linear programming. | |
650 | 0 | |a Programming (Mathematics) | |
650 | 2 | |a Programming, Linear | |
700 | 1 | |a Morelande, Mark R. | |
700 | 1 | |a Musicki, Darko. | |
700 | 1 | |a Evans, Robin J. | |
776 | 0 | 8 | |i Print version: |a Challa, Subhash. |t Fundamentals of Object Tracking. |d Cambridge : Cambridge University Press, ©2011 |z 9780521876285 |
830 | 0 | |a Cambridge books online. | |
852 | |b E-Collections |h ProQuest | ||
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=667571 |z Full text (MCPHS users only) |t 0 |
938 | |a Askews and Holts Library Services |b ASKH |n AH21918507 | ||
938 | |a Coutts Information Services |b COUT |n 22939823 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL667571 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 372798 | ||
938 | |a YBP Library Services |b YANK |n 7113468 | ||
947 | |a FLO |x pq-ebc-base | ||
999 | f | f | |s 7cdcc755-1e93-45fa-a755-288320998044 |i 728022bf-abf6-4031-9cc6-bfaa92886fa1 |t 0 |
952 | f | f | |a Massachusetts College of Pharmacy and Health Sciences |b Online |c Online |d E-Collections |t 0 |e ProQuest |h Other scheme |
856 | 4 | 0 | |t 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=667571 |y Full text (MCPHS users only) |