Lab-on-a-chip : techniques, circuits, and biomedical applications /

"Here's a groundbreaking book that introduces and discusses the important aspects of lab-on-a-chip, including the practical techniques, circuits, microsystems, and key applications in the biomedical, biology, and life science fields. Moreover, this volume covers ongoing research in lab-on-...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Authors: Ghallab, Yehya H. (Author), Badawy, Wael (Author)
Format: Electronic eBook
Language:English
Published: Norwood, Mass. : Artech House, 2010
Series:Artech House integrated microsystems series.
Subjects:
Local Note:ProQuest Ebook Central
Table of Contents:
  • 1. Introduction to Lab-on-a-Chip
  • 1.1. History
  • 1.2. Parts and Components of Lab-on-a-Chip
  • 1.2.1. Electric and Magnetic Actuators
  • 1.2.2. Electrical Sensors
  • 1.2.3. Thermal Sensors
  • 1.2.4. Optical Sensors
  • 1.2.5. Microfluidic Chambers
  • 1.3. Applications of Lab-on-a-Chip
  • 1.4. Advantages and Disadvantages of Lab-on-a-Chip
  • References
  • 2. Cell Structure, Properties, and Models
  • 2.1. Cell Structure
  • 2.1.1. Prokaryotic Cells
  • 2.1.2. Eukaryotic Cells
  • 2.1.3. Cell Components
  • 2.2. Electromechanics of Particles
  • 2.2.1. Single-Layer Model
  • 2.2.2. Double-Layer Model
  • 2.3. Electrogenic Cells
  • 2.3.1. Neurons
  • 2.3.2. Gated Ion Channels
  • 2.3.3. Action Potential
  • References
  • 3. Cell Manipulator Fields
  • 3.1. Electric Field
  • 3.1.1. Uniform Electric Field (Electrophoresis)
  • 3.1.2. Nonuniform Electric Field (Dielectrophoresis)
  • 3.2. Magnetic Field
  • 3.2.1. Nonuniform Magnetic Field (Magnetophoresis)
  • 3.2.2. Magnetophoresis Force (MAP Force)
  • References
  • 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals
  • 4.1. Semiconductor Properties
  • 4.2. Intrinsic Semiconductors
  • 4.3. Extrinsic Semiconductor
  • 4.3.1. N-Type Doping
  • 4.3.2. P-Type Doping
  • 4.4. MOS Device Physics
  • 4.5. MOS Characteristics
  • 4.5.1. Modes of Operation
  • 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device
  • 4.6.1. Advantages of CMOS Technology
  • References
  • 5. Sensing Techniques for Lab-on-a-Chip
  • 5.1. Optical Technique
  • 5.2. Fluorescent Labeling Technique
  • 5.3. Impedance Sensing Technique
  • 5.4. Magnetic Field Sensing Technique
  • 5.5. CMOS AC Electrokinetic Microparticle Analysis System
  • 5.5.1. Bioanalysis Platform
  • 5.5.2. Experimental Tests
  • References
  • 6. CMOS-Based Lab-on-a-Chip
  • 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization
  • 6.2. Actuation
  • 6.3. Impedance Sensing
  • 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation
  • 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection
  • 6.6. CMOS Lab-on-a-Chip for Cytometry Applications
  • 6.7. Flip-Chip Integration
  • References
  • 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection
  • 7.1. Design Flow
  • 7.2. Actuation
  • 7.3. Electrostatic Simulation
  • 7.4. Sensing
  • 7.5. The Electric Field Sensitive Field Effect Transistor (eFET)
  • 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET)
  • 7.7. DeFET Theory of Operation
  • 7.8. Modeling the DeFET
  • 7.8.1. A Simple DC Model
  • 7.8.2. SPICE DC Equivalent Circuit
  • 7.8.3. AC Equivalent Circuit
  • 7.9. The Effect of the DeFET on the Applied Electric Field Profile
  • References
  • 8. Prototyping and Experimental Analysis
  • 8.1. Testing the DeFET
  • 8.1.1. The DC Response
  • 8.1.2. The AC (Frequency) Response
  • 8.1.3. Other Features of the DeFET
  • 8.2. Noise Analysis
  • 8.2.1. Noise Sources
  • 8.2.2. Noise Measurements
  • 8.3. The Effect of Temperature and Light on DeFET Performance
  • 8.4. Testing the Electric Field Imager
  • 8.4.1. The Response of the Imager Under Different Environments
  • 8.4.2. Testing the Imager with Biocells
  • 8.5. Packaging the Lab-on-a-Chip
  • References
  • 9. Readout Circuits for Lab-on-a-Chip
  • 9.1. Current-Mode Circuits
  • 9.2. Operational Floating Current Conveyor (OFCC)
  • 9.2.1. A Simple Model
  • 9.2.2. OFCC with Feedback
  • 9.3. Current-Mode Instrumentation Amplifier
  • 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII
  • 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC
  • 9.4. Experimental and Simulation Results of the Proposed CMIA
  • 9.4.1. The Differential Gain Measurements
  • 9.4.2. Common-Mode Rejection Ratio Measurements
  • 9.4.3. Other Features of the Proposed CMIA
  • 9.4.4. Noise Results
  • 9.5. Comparison Between Different CMIAs
  • 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip
  • References
  • 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications
  • 10.1. Introduction
  • 10.2. CMWB Based on Operational Floating Current Conveyor
  • 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor
  • 10.4. Experimental and Simulation Results
  • 10.4.1. The Differential Measurements
  • 10.4.2. Common-Mode Measurements
  • 10.5. Discussion
  • References
  • 11. Current-Mode Readout Circuits for the pH Sensor
  • 11.1. Introduction
  • 11.2. Differential ISFET-Based pH Sensor
  • 11.2.1. ISFET-Based pH Sensor
  • 11.2.2. Differential ISFET Sensor
  • 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor
  • 11.3.1. Simulation Results
  • 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors
  • 11.4.1. Simulation Results
  • References.