Deep Learning with Keras.

Get to grips with the basics of Keras to implement fast and efficient deep-learning modelsAbout This Book* Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games* See how various deep-learning models and practical use-cases can be implemented using Keras*...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Gulli, Antonio
Other Authors: Pal, Sujit
Format: Electronic eBook
Language:English
Published: Birmingham : Packt Publishing, 2017
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000uu 4500
001 in00000220583
006 m o d
007 cr |n|---|||||
008 170506s2017 enk o 000 0 eng d
005 20240702205000.0
019 |a 985341017  |a 985648098  |a 985830552  |a 985847637  |a 986030146  |a 986126764  |a 986327855  |a 986382215  |a 986436971  |a 986661634  |a 986834549  |a 1002289697 
020 |a 9781787129030 
020 |a 1787129039 
029 1 |a CHNEW  |b 000961486 
029 1 |a CHVBK  |b 491698895 
029 1 |a AU@  |b 000067096783 
035 |a (OCoLC)986102549  |z (OCoLC)985341017  |z (OCoLC)985648098  |z (OCoLC)985830552  |z (OCoLC)985847637  |z (OCoLC)986030146  |z (OCoLC)986126764  |z (OCoLC)986327855  |z (OCoLC)986382215  |z (OCoLC)986436971  |z (OCoLC)986661634  |z (OCoLC)986834549  |z (OCoLC)1002289697 
035 |a (OCoLC)ocn986102549 
037 |a 1007932  |b MIL 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d MERUC  |d YDX  |d OCLCQ  |d CHVBK  |d OCLCQ  |d COO  |d OCLCO  |d OCLCF  |d UOK  |d MOQ  |d WYU  |d OCLCQ  |d LVT  |d VT2  |d C6I  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
050 4 |a T55.4-60.8 
082 1 4 |a [E] 
100 1 |a Gulli, Antonio. 
245 1 0 |a Deep Learning with Keras. 
260 |a Birmingham :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (310 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Chapter 4: Generative Adversarial Networks and WaveNet. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Neural Networks Foundations; Perceptron; The first example of Keras code; Multilayer perceptron -- the first example of a network; Problems in training the perceptron and a solution; Activation function -- sigmoid; Activation function -- ReLU; Activation functions; A real example -- recognizing handwritten digits; One-hot encoding -- OHE; Defining a simple neural net in Keras; Running a simple Keras net and establishing a baseline. 
505 8 |a Improving the simple net in Keras with hidden layersFurther improving the simple net in Keras with dropout; Testing different optimizers in Keras; Increasing the number of epochs; Controlling the optimizer learning rate; Increasing the number of internal hidden neurons; Increasing the size of batch computation; Summarizing the experiments run for recognizing handwritten charts; Adopting regularization for avoiding overfitting; Hyperparameters tuning; Predicting output; A practical overview of backpropagation; Towards a deep learning approach; Summary; Chapter 2: Keras Installation and API. 
505 8 |a Installing KerasStep 1 -- install some useful dependencies; Step 2 -- install Theano; Step 3 -- install TensorFlow; Step 4 -- install Keras; Step 5 -- testing Theano, TensorFlow, and Keras; Configuring Keras; Installing Keras on Docker; Installing Keras on Google Cloud ML; Installing Keras on Amazon AWS; Installing Keras on Microsoft Azure; Keras API; Getting started with Keras architecture; What is a tensor?; Composing models in Keras; Sequential composition; Functional composition; An overview of predefined neural network layers; Regular dense; Recurrent neural networks -- simple, LSTM, and GRU. 
505 8 |a Convolutional and pooling layersRegularization; Batch normalization; An overview of predefined activation functions; An overview of losses functions; An overview of metrics; An overview of optimizers; Some useful operations; Saving and loading the weights and the architecture of a model; Callbacks for customizing the training process; Checkpointing; Using TensorBoard and Keras; Using Quiver and Keras; Summary; Chapter 3: Deep Learning with ConvNets; Deep convolutional neural network -- DCNN; Local receptive fields; Shared weights and bias; Pooling layers; Max-pooling; Average pooling. 
505 8 |a ConvNets summaryAn example of DCNN -- LeNet; LeNet code in Keras; Understanding the power of deep learning; Recognizing CIFAR-10 images with deep learning; Improving the CIFAR-10 performance with deeper a network; Improving the CIFAR-10 performance with data augmentation; Predicting with CIFAR-10; Very deep convolutional networks for large-scale image recognition; Recognizing cats with a VGG-16 net; Utilizing Keras built-in VGG-16 net module; Recycling pre-built deep learning models for extracting features; Very deep inception-v3 net used for transfer learning; Summary. 
520 8 |a Get to grips with the basics of Keras to implement fast and efficient deep-learning modelsAbout This Book* Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games* See how various deep-learning models and practical use-cases can be implemented using Keras* A practical, hands-on guide with real-world examples to give you a strong foundation in KerasWho This Book Is ForIf you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn* Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm* Fine-tune a neural network to improve the quality of results* Use deep learning for image and audio processing* Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases* Identify problems for which Recurrent Neural Network (RNN) solutions are suitable* Explore the process required to implement Autoencoders* Evolve a deep neural network using reinforcement learningIn DetailThis book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approachThis book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central College Complete 
650 0 |a Python. 
650 0 |a Neural networks. 
650 0 |a Machine learning. 
700 1 |a Pal, Sujit. 
758 |i has work:  |a Deep Learning with Keras (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXvPVGkTcrFmf46w379FKd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Gulli, Antonio.  |t Deep Learning with Keras.  |d Birmingham : Packt Publishing, ©2017 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=4850536  |z Full text (MCPHS users only)  |t 0 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4850536 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38046432 
938 |a YBP Library Services  |b YANK  |n 14266766 
947 |a FLO  |x pq-ebc-base 
999 f f |s c00e96a9-6f8f-49e0-80bf-ee9516494f42  |i 08ba4b44-ebda-491a-95d3-c9207c9c0a80  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=4850536  |y Full text (MCPHS users only)