Advanced analytic number theory. Part 1, Ramification theoretic methods /

These notes are intended as an introduction to those aspects of analytic number theory which depend on and have applications to the algebraic numbers. As is well known the central problem of the theory general algebraic formulation of ·the following distribution results: number theorem, Dirichlet�...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Moreno, Carlos J., 1946-
Format: Electronic eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, 1983
Series:Contemporary mathematics (American Mathematical Society) ; 15.
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000226048
006 m o d
007 cr cn|||||||||
008 140523t19831983riua ob 001 0 eng d
005 20240702205342.0
019 |a 610286955  |a 655360608  |a 922980540  |a 1078098297  |a 1086450117  |a 1240461988 
020 |a 9780821876015  |q (e-book) 
020 |a 0821876015  |q (e-book) 
020 |z 9780821850152 
020 |z 0821850156  |q (pbk.) 
029 1 |a AU@  |b 000069396559 
035 |a (OCoLC)882502490  |z (OCoLC)610286955  |z (OCoLC)655360608  |z (OCoLC)922980540  |z (OCoLC)1078098297  |z (OCoLC)1086450117  |z (OCoLC)1240461988 
035 |a (OCoLC)ocn882502490 
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d VT2  |d OCLCO  |d TXI  |d OCL  |d OCLCQ  |d OCLCE  |d COO  |d YDXCP  |d YOU  |d LEAUB  |d UAB  |d OCLCO  |d OCLCL 
042 |a dlr 
050 4 |a QA241  |b .M67 1983eb 
082 0 4 |a 512/.7  |2 19 
100 1 |a Moreno, Carlos J.,  |d 1946-  |1 https://id.oclc.org/worldcat/entity/E39PBJrChMg489G8PQFCtw3vpP 
245 1 0 |a Advanced analytic number theory.  |n Part 1,  |p Ramification theoretic methods /  |c Carlos J. Moreno. 
246 3 0 |a Ramification theoretic methods 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [1983] 
264 4 |c ©1983 
300 |a 1 online resource (viii, 190 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Contemporary mathematics,  |x 0271-4132 ;  |v 15 
504 |a Includes bibliographical references (pages 185-188), and index. 
505 0 0 |t Introduction --  |t Galois theory of infinite extensions --  |t Projective limits --  |t Elementary theory of ℓ-adic integration --  |t Ramification theory --  |t Multiplicative versus additive reduction --  |t Ramification of Abelian extensions --  |t The Weil groups of a local field --  |t Shafarevitch's theorem --  |t The Herbrand distribution. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
520 |a These notes are intended as an introduction to those aspects of analytic number theory which depend on and have applications to the algebraic numbers. As is well known the central problem of the theory general algebraic formulation of ·the following distribution results: number theorem, Dirichlet's theorem on primes in arithmetic progressions, Cebotarev's density theorem on the distribution of Frobenius conjugacy classes in Galois groups, Hecke's density theorem on the distribution of the arguments of quasi-characters of idele class groups, Sato-Tate conjectural densities for the value distribution of the traces of Frobenius elements, strong multiplicity one theorem for automorphic representations of the general linear group, etc. These are all variants of a specific fundamental distribution problem. The principle aim of these notes is to develop these formulas and to give some of their applications. 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Online resource; title from PDF title page (ebrary, viewed May 23, 2014). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Number theory. 
650 0 |a Algebraic fields. 
655 7 |a Instructional and educational works.  |2 lcgft 
758 |i has work:  |a Advanced analytic number theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfHhFyHDWcjQ8GJjCTQ9C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Moreno, Carlos J., 1946-  |t Advanced Analytic Number Theory Pt. 1 : Ramification Theoretic Methods.  |d Providence : American Mathematical Society, ©1983  |z 9780821850152 
830 0 |a Contemporary mathematics (American Mathematical Society) ;  |v 15. 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=3112904  |z Full text (MCPHS users only)  |t 0 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3112904 
938 |a ebrary  |b EBRY  |n ebr10873067 
938 |a YBP Library Services  |b YANK  |n 11826972 
947 |a FLO  |x pq-ebc-base 
999 f f |s 714941c5-ef14-4f00-a640-a9da33ecde6f  |i 6ad7b3d4-d0bb-4556-b260-e3ca7c6f143f  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=3112904  |y Full text (MCPHS users only)