One-Dimensional Metals : Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene.

Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Roth, Siegmar
Other Authors: Carroll, David
Format: Electronic eBook
Language:English
Published: Wiley, 2015
Edition:3rd ed.
Subjects:
Local Note:ProQuest Ebook Central
Table of Contents:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • About the Authors
  • Preface to the Third Edition
  • Preface to the Second Edition
  • Preface to the First Edition
  • Chapter 1 Introduction
  • 1.1 Dimensionality
  • 1.2 Approaching One-Dimensionality from Outside and from Inside
  • 1.3 Dimensionality of Carbon Solids
  • 1.3.1 Three-Dimensional Carbon: Diamond
  • 1.3.2 Two-Dimensional Carbon: Graphite
  • 1.3.3 One-Dimensional Carbon: Cumulene, Polycarbyne, Polyene
  • 1.3.4 Zero-Dimensional Carbon: Fullerene
  • 1.3.5 What about Something in between?
  • 1.4 Peculiarities of One-Dimensional SystemsReferences
  • Chapter 2 One-Dimensional Substances
  • 2.1 A15 Compounds
  • 2.2 Krogmann Salts
  • 2.3 Alchemists' Gold
  • 2.4 Bechgaard Salts and Other Charge Transfer Compounds
  • 2.5 Polysulfurnitride
  • 2.6 Phthalocyanines and Other Macrocycles
  • 2.7 Transition Metal Chalcogenides and Halides
  • 2.8 Conducting Polymers
  • 2.9 Halogen-Bridged Mixed-Valence Transition Metal Complexes
  • 2.10 Miscellaneous
  • 2.10.1 Poly-deckers
  • 2.10.2 Polycarbenes
  • 2.11 Isolated Nanowires
  • 2.11.1 Templates and Filled Pores2.11.2 Asymmetric Growth Using Catalysts
  • 2.11.3 Carbon Nanotubes
  • 2.11.4 Inorganic Semiconductor Quantum Wires
  • 2.11.5 Metal Nanowires
  • 2.12 Summary
  • References
  • Chapter 3 One-Dimensional Solid-State Physics
  • 3.1 Crystal Lattice and Translation Symmetry
  • 3.1.1 Classifying the Lattice
  • 3.1.2 Using a Coordinate System
  • 3.1.3 The One-Dimensional Lattice
  • 3.1.4 Carbon Nanotubes as One-Dimensional Lattices
  • 3.2 Reciprocal Lattice, Reciprocal Space
  • 3.2.1 Describing Objects Using Momentum and Energy
  • 3.2.2 Constructing the Reciprocal Lattice3.2.3 Applying This to One Dimension
  • 3.3 The Dynamic Crystal and Dispersion Relations
  • 3.3.1 Crystal Vibrations and Phonons
  • 3.3.2 Quantum Considerations with Phonons
  • 3.3.3 Counting Phonons
  • 3.4 Phonons and Electrons Are Different
  • 3.4.1 Electron Waves
  • 3.4.2 Electron Statistics
  • 3.4.3 The Fermi Surface
  • 3.4.4 The Free Electron Model
  • 3.4.5 Nearly Free Electron Model; Energy Bands, Energy Gap, and Density of States
  • 3.4.6 The Molecular Orbital Approach
  • 3.4.7 Returning to Carbon Nanotubes
  • 3.5 SummaryReferences
  • Chapter 4 Electron-Phonon Coupling and the Peierls Transition
  • 4.1 The Peierls Distortion
  • 4.2 Phonon Softening and the Kohn Anomaly
  • 4.3 Fermi Surface Warping
  • 4.4 Beyond Electron-Phonon Coupling
  • References
  • Chapter 5 Conducting Polymers: Solitons and Polarons
  • 5.1 General Remarks
  • 5.2 Conjugated Double Bonds
  • 5.3 A Molecular Picture
  • 5.3.1 Bonding and Antibonding States
  • 5.3.2 The Polyenes
  • 5.3.3 Translating to Bloch's Theorem
  • 5.4 Conjugational Defects
  • 5.5 Solitons
  • 5.6 Generation of Solitons