Polymer electrolyte membrane fuel cells and electrocatalysts /

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Other Authors: Esposito, Richard, 1963-, Conti, Antonio, 1962-
Format: Electronic eBook
Language:English
Published: New York : Nova Science Publishers, 2009
Subjects:
Local Note:ProQuest Ebook Central
Table of Contents:
  • POLYMER ELECTROLYTE MEMBRANEFUEL CELLS AND ELECTROCATALYSTS
  • CONTENTS
  • PREFACE
  • SYNTHESIS OF POLYMER ELECTROLYTE MEMBRANEFOR FUEL CELL APPLICATIONS
  • ABSTRACT
  • 1. INTRODUCTION
  • 2. MATERIALS AND METHODS
  • 2.1 Materials
  • 2.2 Membrane Manufacturing Procedures
  • 3. EVALUATION OF PROTON EXCHANGE MEMBRANE(PEM) PERFORMANCE
  • 3.1 Conductivity
  • 3.1.1 Through-Plane Conductivity Measurements
  • Advantages
  • Disadvantages
  • 3.1.2 In-Plane Conductivity Measurements
  • Advantages
  • Disadvantages
  • 3.2 Resistance
  • 3.3 Theoretical Model to Measure Membrane Conductivity and ResistanceBased on Proton Flow3.4 Experimental Set-Up and Procedures
  • 3.4.1 Measurement of Proton Transfer Rate and Membrane Resistance
  • 3.4.2 pH Measuring Process and Calculation of Proton Concentration
  • 3.4.3 Measurement of Proton Transfer
  • 4. RESULTS AND DISCUSSIONS
  • 4.1 Thermal Stability of Membrane Conductivity
  • 4.2 Relative Resistance
  • 4.3 Water Uptake Content
  • 5. CONCLUSIONS
  • REFERENCES
  • THE DEVELOPMENT OF BIPOLAR PLATE MATERIALSFOR POLYMER ELECTROLYTE MEMBRANE FUELCELLS (PEMFC)
  • ABSTRACTKeywords:
  • 1. FUEL CELLS
  • 2. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS (PEMFCS)
  • 2.1 What is PEMFCs?
  • 2.2 Why Are PEMFCs so Important?
  • 2.3 How do PEMFCs Work?
  • 2.3.1 Activation Polarization
  • 2.3.2 Ohmic Polarization
  • 2.3.3 Concentration Polarization
  • 2.3.4 Reactant Crossover and Internal Current Losses
  • 3. BIPOLAR PLATES AND THEIR DESIGN
  • 3.1 What Are the Bipolar Plates?
  • 3.2 Why Are the Bipolar Plates Important?
  • 3.3 Bipolar Plate Design
  • Pin-Type Flow Field
  • Straight Flow Field
  • Serpentine Flow Field
  • Integrated Flow FieldInterdigitated Flow Field
  • Flow-Field Designs Made From Metal Sheets
  • 3.4 Materials for Bipolar Plates
  • 3.4.1 Graphite Bipolar Plates
  • 3.4.2 Composite Bipolar Plates
  • 3.4.3 Metallic Bipolar Plates
  • 3.4.3.1 Uncoated Metals
  • 3.4.3.2 Coated Metals
  • 4. CONCLUDING REMARKS
  • REFERENCE
  • FUEL CELL CONVERTERSFOR HIGH POWER APPLICATIONS
  • ABSTRACT
  • I. INTRODUCTION
  • II. FUEL CELL TECHNOLOGY
  • A. Basic Principle
  • B. Proton Exchange Membrane Fuel Cell
  • C. PEM Fuel Cell System
  • D. PEM Fuel Cell Performance
  • 1. Static Characteristics2. Dynamic Characteristics
  • III. FUEL CELL POWER CONDITIONING
  • IV. FUEL CELL POWER CONVERTERS
  • A. Non-Isolated Converter
  • 1. Design Example of 2-Phase Interleaved Fuel Cell Converter [114]
  • 2. Experimental Results of 2-Phase Interleaved Fuel Cell Converter
  • B. Modified Non-Isolated Converter
  • C. Ground Isolated Converter
  • V. CONCLUSION
  • ACKNOWLEDGMENT
  • BIOGRAPHIES
  • Phatiphat Thounthong
  • Bernard Davat
  • REFERENCES
  • CFD MODELS FOR ANALYSIS AND DESIGNOF AMBIENT AIR-BREATHING PEM FUEL CELLS
  • ABSTRACT