A geometric setting for Hamiltonian perturbation theory /
Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimat...
Saved in:
Online Access: |
Full text (MCPHS users only) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Providence, R.I. :
American Mathematical Society,
2001
|
Series: | Memoirs of the American Mathematical Society ;
no. 727. |
Subjects: | |
Local Note: | ProQuest Ebook Central |
Summary: | Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimates for momentum maps Part 2. Geometry: On Hamiltonian $G$-spaces with regular momenta Action-group coordinates as a symplectic cross-section Constructing action-group coordinates The axisymmetric Euler-Poinsot rigid body Passing from dynamic integrability to geometric integrability Concluding remarks Appendix A. Proof of the Nekhoroshev-Lochak theorem Appendix B. Proof the ${ mathcal W}$ is a slice Appendix C. Proof of the extension lemma Appendix D. An application of converting dynamic integrability into geometric integrability: The Euler-Poinsot rigid body revisited Appendix E. Dual pairs, leaf correspondence, and symplectic reduction Bibliography. |
---|---|
Item Description: | "September 2001, volume 153, number 727 (third of 5 numbers)." |
Physical Description: | 1 online resource (xviii, 112 pages) : illustrations |
Bibliography: | Includes bibliographical references (pages 110-112). |
ISBN: | 9781470403201 147040320X |
ISSN: | 1947-6221 ; 0065-9266 |
Source of Description, Etc. Note: | Print version record. |