A geometric setting for Hamiltonian perturbation theory /

Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimat...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Blaom, Anthony D., 1968-
Format: Electronic eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, 2001
Series:Memoirs of the American Mathematical Society ; no. 727.
Subjects:
Local Note:ProQuest Ebook Central
Description
Summary:Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimates for momentum maps Part 2. Geometry: On Hamiltonian $G$-spaces with regular momenta Action-group coordinates as a symplectic cross-section Constructing action-group coordinates The axisymmetric Euler-Poinsot rigid body Passing from dynamic integrability to geometric integrability Concluding remarks Appendix A. Proof of the Nekhoroshev-Lochak theorem Appendix B. Proof the ${ mathcal W}$ is a slice Appendix C. Proof of the extension lemma Appendix D. An application of converting dynamic integrability into geometric integrability: The Euler-Poinsot rigid body revisited Appendix E. Dual pairs, leaf correspondence, and symplectic reduction Bibliography.
Item Description:"September 2001, volume 153, number 727 (third of 5 numbers)."
Physical Description:1 online resource (xviii, 112 pages) : illustrations
Bibliography:Includes bibliographical references (pages 110-112).
ISBN:9781470403201
147040320X
ISSN:1947-6221 ;
0065-9266
Source of Description, Etc. Note:Print version record.