A geometric setting for Hamiltonian perturbation theory /

Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimat...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Blaom, Anthony D., 1968-
Format: Electronic eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, 2001
Series:Memoirs of the American Mathematical Society ; no. 727.
Subjects:
Local Note:ProQuest Ebook Central
Table of Contents:
  • Introduction Part 1. Dynamics 1. Lie-theoretic preliminaries 2. Action-group coordinates 3. On the existence of action-group coordinates 4. Naive averaging 5. An abstract formulation of Nekhoroshev's theorem 6. Applying the abstract Nekhoroshev theorem to action-group coordinates 7. Nekhoroshev-type estimates for momentum maps Part 2. Geometry 8. On Hamiltonian $G$-spaces with regular momenta 9. Action-group coordinates as a symplectic cross-section 10. Constructing action-group coordinates 11. The axisymmetric Euler-Poinsot rigid body 12. Passing from dynamic integrability to geometric integrability 13. Concluding remarks.