A geometric setting for Hamiltonian perturbation theory /
Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimat...
Saved in:
Online Access: |
Full text (MCPHS users only) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Providence, R.I. :
American Mathematical Society,
2001
|
Series: | Memoirs of the American Mathematical Society ;
no. 727. |
Subjects: | |
Local Note: | ProQuest Ebook Central |
Table of Contents:
- Introduction Part 1. Dynamics 1. Lie-theoretic preliminaries 2. Action-group coordinates 3. On the existence of action-group coordinates 4. Naive averaging 5. An abstract formulation of Nekhoroshev's theorem 6. Applying the abstract Nekhoroshev theorem to action-group coordinates 7. Nekhoroshev-type estimates for momentum maps Part 2. Geometry 8. On Hamiltonian $G$-spaces with regular momenta 9. Action-group coordinates as a symplectic cross-section 10. Constructing action-group coordinates 11. The axisymmetric Euler-Poinsot rigid body 12. Passing from dynamic integrability to geometric integrability 13. Concluding remarks.