Mapping class groups of low genus and their cohomology /

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Authors: Benson, D. J. (David J.), 1955- (Author), Cohen, Frederick R. (Frederick Ronald), 1945- (Author)
Format: Electronic eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, 1991
Series:Memoirs of the American Mathematical Society ; no. 443.
Subjects:
Local Note:ProQuest Ebook Central
Table of Contents:
  • ""Contents""; ""Introduction""; ""Artin's Braid Group and the Homology of Certain Subgroups of the Mapping Class Group""; ""1 Statement of Results""; ""2 Presentations""; ""3 H*(K[sub(n)]; Z)""; ""4 Proof of Theorem 1.1""; ""5 The modâ€?5 Cohomology of T[sup(0)][sub(2,0)] and T[sup(6)][sub(0,0)]""; ""6 The modâ€?3 Cohomology of T[sup(0)][sub(2,0)]""; ""7 The modâ€?2 Cohomology of T[sup(0)][sub(2,0)]; Theorems 1.3 and 1.4""; ""8 H*(Σ[sub(6)]; H*(K[sub(6)]; F[sub(5)])); Theorem 5.3""; ""9 Theorem 1.6""; ""10 Facts about B[sub(n)] and Lemmas 3.2 and 3.3""
  • ""Specht Modules and the Cohomology of Mapping Class Groups""""1 Introduction""; ""2 The modules H[sup(j)(K[sub(n),Z), j â?? 3""; ""3 Modules for A[sub(6)] and Σ[sub(6)] in characteristic two""; ""4 Diagrams for H[sup(j)]; (K[sub(6)],F[sub(2)]) as F[sub(2)]A[sub(6)]â€?modules""; ""5 Calculation of H*(Σ[sub(6)]; ,H*(K[sub(6)],F[sub(2)])) â?? H*(T[sup(6)][sub(0,0)],F[sub(2)])""; ""6 Finite subgroups of T[sup(6)][sub(0,0)] and T[sup(0)][sub(2,0)]""; ""7 Calculation of the spectral sequences for H*(T[sup(6)][sub(0,0,)], F[sub(2)] and H*(T[sup(0)][sub(2,0,)], F[sub(2)]""
  • ""8 Calculations in characteristic three""""The mod 2 cohomology of the mapping class group for a surface of genus two""; ""1 Introduction""; ""2 A construction for K(T[sup(n)[sub(0,00], 1); characteristic classes""; ""3 Steenrod operations on H*(F(S[sup(2)],6)/Σ[sub(6)],F[sub(2)]""; ""4 Steenrod operations on H*(T[sup(6)][sub(0,0)],F[sub(2)]""; ""5 The spectral sequence for T[sup(0)][sub(2,0)]""