Kernel smoothing in MATLAB : theory and practice of Kernel smoothing /

Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is giv...

Full description

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Other Authors: Horová, Ivana, Koláček, Jan, Zelinka, Jiří
Format: Electronic eBook
Language:English
Published: Singapore : World Scientific, 2012
Subjects:
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 a 4500
001 in00000360770
006 m o d
007 cr mn|||||||||
008 121004s2012 si a ob 001 0 eng d
005 20240725200919.0
010 |a  2012554726 
019 |a 813396022  |a 817819016  |a 961608634  |a 962660456  |a 988436312  |a 992043506  |a 994983544  |a 1037719214  |a 1055383590  |a 1062932222  |a 1081293605  |a 1086446623  |a 1153466352  |a 1228577608  |a 1259245282 
020 |a 9789814405492  |q (electronic bk.) 
020 |a 9814405493  |q (electronic bk.) 
020 |z 9814405485 
020 |z 9789814405485 
020 |z 661394842X 
020 |z 9786613948427 
020 |z 1283635968 
020 |z 9781283635967 
029 1 |a AU@  |b 000052914783 
029 1 |a CHNEW  |b 000619968 
029 1 |a DEBBG  |b BV043139192 
029 1 |a DEBBG  |b BV044168974 
029 1 |a DEBSZ  |b 379330369 
029 1 |a DEBSZ  |b 421330406 
029 1 |a DEBSZ  |b 454997787 
029 1 |a NZ1  |b 15586797 
029 1 |a AU@  |b 000073139040 
035 |a (OCoLC)811820296  |z (OCoLC)813396022  |z (OCoLC)817819016  |z (OCoLC)961608634  |z (OCoLC)962660456  |z (OCoLC)988436312  |z (OCoLC)992043506  |z (OCoLC)994983544  |z (OCoLC)1037719214  |z (OCoLC)1055383590  |z (OCoLC)1062932222  |z (OCoLC)1081293605  |z (OCoLC)1086446623  |z (OCoLC)1153466352  |z (OCoLC)1228577608  |z (OCoLC)1259245282 
035 |a (OCoLC)ocn811820296 
040 |a HKP  |b eng  |e pn  |c HKP  |d OCLCO  |d IDEBK  |d EBLCP  |d YDXCP  |d OCLCQ  |d E7B  |d DEBSZ  |d CDX  |d I9W  |d N$T  |d OCLCF  |d OCLCQ  |d AZK  |d AGLDB  |d MOR  |d CCO  |d DXU  |d PIFAG  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCQ  |d SXB 
050 4 |a QA278  |b .K427 2012eb 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5 
245 0 0 |a Kernel smoothing in MATLAB :  |b theory and practice of Kernel smoothing /  |c edited by Ivanka Horová, Jan Koláček, Jiří Zelinka. 
260 |a Singapore :  |b World Scientific,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 213-223) and index. 
505 0 |a 1. Introduction. 1.1. Kernels and their properties. 1.2. Use of MATLAB toolbox. 1.3. Complements -- 2. Univariate kernel density estimation. 2.1. Basic definition. 2.2. Statistical properties of the estimate. 2.3. Choosing the shape of the kernel. 2.4. Choosing the bandwidth. 2.5. Density derivative estimation. 2.6. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 2.7. Boundary effects. 2.8. Simulations. 2.9. Application to real data. 2.10. Use of MATLAB toolbox. 2.11. Complements -- 3. Kernel estimation of a distribution function. 3.1. Basic definition. 3.2. Statistical properties of the estimate. 3.3. Choosing the bandwidth. 3.4. Boundary effects. 3.5. Application to data. 3.6. Simulations. 3.7. Application to real data. 3.8. Use of MATLAB toolbox. 3.9. Complements -- 4. Kernel estimation and reliability assessment. 4.1. Basic definition. 4.2. Estimation of ROC curves. 4.3. Summary indices based on the ROC curve. 4.4. Other indices of reliability assessment. 4.5. Application to real data. 4.6. Use of MATLAB toolbox -- 5. Kernel estimation of a hazard function. 5.1. Basic definition. 5.2. Statistical properties of the estimate. 5.3. Choosing the bandwidth. 5.4. Description of algorithm. 5.5. Application to real data. 5.6. Use of MATLAB toolbox. 5.7. Complements -- 6. Kernel estimation of a regression function. 6.1. Basic definition. 6.2. Statistical properties of the estimate. 6.3. Choosing the bandwidth. 6.4. Estimation of the derivative of the regression function. 6.5. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 6.6. Boundary effects. 6.7. Simulations. 6.8. Application to real data. 6.9. Use of MATLAB toolbox. 6.10. Complements -- 7. Multivariate kernel density estimation. 7.1. Basic definition. 7.2. Statistical properties of the estimate. 7.3. Bandwidth matrix selection. 7.4. A special case for bandwidth selection. 7.5. Simulations. 7.6. Application to real data. 7.7. Use of MATLAB toolbox. 7.8. Complements. 
520 |a Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density. Specifically, methods for choosing a choice of the optimal bandwidth and a special procedure for simultaneous choice of the bandwidth, the kernel and its order are implemented. The toolbox is divided into six parts according to the chapters of the book. All scripts are included in a user interface and it is easy to manipulate with this interface. Each chapter of the book contains a detailed help for the related part of the toolbox too. This book is intended for newcomers to the field of smoothing techniques and would also be appropriate for a wide audience: advanced graduate, PhD students and researchers from both the statistical science and interface disciplines. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Smoothing (Statistics) 
650 0 |a Kernel functions. 
700 1 |a Horová, Ivana. 
700 1 |a Koláček, Jan. 
700 1 |a Zelinka, Jiří. 
776 0 8 |i Print version:  |t Kernel smoothing in MATLAB.  |d Singapore : World Scientific, 2012  |w (DLC) 2012554726 
852 |b E-Collections  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1044403  |z Full text (MCPHS users only)  |t 0 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24433120 
938 |a Coutts Information Services  |b COUT  |n 24024674 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1044403 
938 |a ebrary  |b EBRY  |n ebr10607779 
938 |a EBSCOhost  |b EBSC  |n 491509 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 394842 
938 |a YBP Library Services  |b YANK  |n 9782185 
947 |a FLO  |x pq-ebc-base 
999 f f |s a63f34f3-2b1b-43dc-ae0a-ea705d1efdf6  |i 1a88635f-db8a-45d0-85d9-1f57bba87c3b  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=1044403  |y Full text (MCPHS users only)