Big Data, IoT, and Machine Learning Tools and Applications.

Saved in:
Bibliographic Details
Online Access: Full text (MCPHS users only)
Main Author: Agrawal, Rashmi
Other Authors: Paprzycki, Marcin, Gupta, Neha
Format: Electronic eBook
Language:English
Published: Milton : Taylor & Francis Group, 2020
Series:Internet of Everything (IoE) Ser.
Local Note:ProQuest Ebook Central
Table of Contents:
  • Cover
  • Half Title
  • Series Page
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Acknowledgement
  • Editors
  • Contributors
  • Section I Applications of Machine Learning
  • Chapter 1 Machine Learning Classifiers
  • 1.1 Introduction
  • 1.2 Machine Learning Overview
  • 1.2.1 Steps in Machine Learning
  • 1.2.2 Performance Measures for Machine Learning Algorithms
  • 1.2.2.1 Confusion Matrix
  • 1.3 Machine Learning Approaches
  • 1.4 Types of Machine Learning
  • 1.4.1 Supervised Learning
  • 1.4.2 Unsupervised Learning
  • 1.4.3 Semi-Supervised Learning
  • 1.4.4 Reinforcement Learning
  • 1.5 A Taste of Classification
  • 1.5.1 Binary Classification
  • 1.5.2 Multiclass Classification
  • 1.5.3 Multilabel Classification
  • 1.5.4 Linear Classification
  • 1.5.5 Non-Linear Classification
  • 1.6 Machine Learning Classifiers
  • 1.6.1 Python for Machine Learning Classification
  • 1.6.2 Decision Tree
  • 1.6.2.1 Building a Decision Tree
  • 1.6.2.2 Induction
  • 1.6.2.3 Best Attribute Selection
  • 1.6.2.4 Pruning
  • 1.6.3 Random Forests
  • 1.6.3.1 Evaluating Random Forest
  • 1.6.3.2 Tuning Parameters in Random Forest
  • 1.6.3.3 Splitting Rule
  • 1.6.4 Support Vector Machine
  • 1.6.5 Neural Networks
  • 1.6.5.1 Back Propagation Algorithm
  • 1.6.6 Logistic Regression
  • 1.6.7 k-Nearest Neighbor
  • 1.6.7.1 The k-NN Algorithm
  • 1.7 Model Selection and Validation
  • 1.7.1 Hyperparameter Tuning and Model Selection
  • 1.7.2 Bias, Variance and Model Selection
  • 1.7.3 Model Validation
  • Conclusion
  • References
  • Chapter 2 Dimension Reduction Techniques
  • 2.1 Dimension Reduction
  • 2.2 Dimension Reduction Techniques
  • 2.2.1 Feature Selection
  • 2.2.2 Feature Extraction
  • 2.3 Linear Dimension Reduction Techniques
  • 2.3.1 Principal Component Analysis
  • 2.3.2 Singular Value Decomposition
  • 2.3.3 Latent Discriminant Analysis
  • 2.3.4 Independent Component Analysis
  • 2.3.5 Projection Pursuits
  • 2.3.6 Latent Semantic Analysis
  • 2.3.7 Locality Preserving Projection
  • 2.4 Nonlinear Dimension Reduction Techniques
  • 2.4.1 Kernel Principal Component Analysis
  • 2.4.2 Isomap
  • 2.4.3 Locally Linear Embedding
  • 2.4.4 Self Organising Map
  • 2.4.5 Learning Vector Quantisation
  • 2.4.6 t-Stochastic Neighbor Embedding
  • 2.5 Conclusion and Future Directions
  • References
  • Chapter 3 Reviews Analysis of Apple Store Applications Using Supervised Machine Learning
  • 3.1 Introduction
  • 3.2 Literature Review
  • 3.2.1 Machine Learning Algorithms
  • 3.2.2 Feature Extraction Algorithms
  • 3.3 Proposed Methodology
  • 3.3.1 Data Collection
  • 3.3.2 Feature Extraction
  • 3.3.3 Data Analysis and Sentiment Analysis
  • Text Processing
  • 3.3.4 Text Normalisation
  • 3.4 Feature Extraction Algorithm
  • 3.4.1 CountVectorizer
  • 3.4.2 TfidfVectorizer (TF-IDF)
  • 3.5 Supervised ML Classification
  • 3.6 Experiment Design
  • 3.7 Experimental Results and Analysis