Inconsistency in networks of evidence based on randomised controlled trials /

In this document we describe methods to detect inconsistency in a network meta-analysis. Inconsistency can be thought of as a conflict between "direct" evidence on a comparison between treatments B and C, and "indirect" evidence gained from AC and AB trials. Like heterogeneity, i...

Full description

Saved in:
Bibliographic Details
Online Access: http://www.ncbi.nlm.nih.gov/books/NBK310372/
Full text
Main Author: Dias, Sofia, 1977- (Author)
Format: Electronic eBook
Language:English
Published: London : National Institute for Health and Care Excellence (NICE), 2014
Edition:Updated.
Series:NICE DSU technical support document ; 4.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 p2436616
005 20240212122438.0
006 m o d
007 cr cn ||||||||
008 190202s2014 enka ob 000 0 eng
035 |a (DNLM)BKSHLF:NBK310372 
035 |9 101741939 
035 |a 1741939 
040 |a DNLM  |b eng  |e rda  |c DNLM  |d UtOrBLW 
041 0 9 |a eng 
042 |a pcc 
043 |a e-uk--- 
044 |9 England 
060 0 0 |a W 20.55.C5 
100 1 |a Dias, Sofia,  |d 1977-  |e author.  |0 n 2017060524 
245 1 0 |a Inconsistency in networks of evidence based on randomised controlled trials /  |c report by the Decision Support Unit ; Sofia Dias [and 5 others]. 
250 |a Updated. 
264 1 |a London :  |b National Institute for Health and Care Excellence (NICE),  |c April 2014. 
300 |a 1 online resource (1 PDF file (41 pages)) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a NICE DSU technical support document ;  |v 4 
504 |a Includes bibliographical references. 
520 3 |a In this document we describe methods to detect inconsistency in a network meta-analysis. Inconsistency can be thought of as a conflict between "direct" evidence on a comparison between treatments B and C, and "indirect" evidence gained from AC and AB trials. Like heterogeneity, inconsistency is caused by effect-modifiers, and specifically by an imbalance in the distribution of effect modifiers in the direct and indirect evidence. Checking for inconsistency therefore logically comes alongside a consideration of the extent of heterogeneity and its sources, and the possibility of adjustment by meta-regression or bias adjustment (see TSD3). We emphasise that while tests for inconsistency must be carried out, they are inherently underpowered, and will often fail to detect it. Investigators must therefore also ask whether, if inconsistency is not detected, conclusions from combining direct and indirect evidence can be relied upon. 
588 |a Description based on online resource; title from PDF title page (viewed March 18, 2019). 
650 1 2 |a Randomized Controlled Trials as Topic.  |0 D016032 
650 2 2 |a Network Meta-Analysis.  |0 D000071076 
650 2 2 |a Data Accuracy.  |0 D000068598 
650 2 2 |a Evidence-Based Practice.  |0 D055317 
651 2 |a United Kingdom.  |0 D006113 
710 2 |a National Institute for Health and Care Excellence (Great Britain).  |b Decision Support Unit,  |e issuing body.  |0 n 2019181846 
830 0 |a NICE DSU technical support document ;  |v 4.  |0 n 2019181951 
856 4 0 |u http://www.ncbi.nlm.nih.gov/books/NBK310372/  |t 0 
951 |a 2436616 
993 |a CAD  |b 20190226 
998 |a BKSHLF  |b 20190202 
998 |a FER  |b 20190202 
999 |a AUTH 
999 f f |i 0573d440-8429-5c19-b983-635147fe1051  |s e1bb9a52-35d3-54ec-8f99-6b06ee9fa1d5  |t 0 
952 f f |a Massachusetts College of Pharmacy and Health Sciences  |b Online  |c Online  |d E-Collections  |t 0  |e NCBI  |h Other scheme 
856 4 0 |t 0  |u https://www.ncbi.nlm.nih.gov/books/NBK310372/  |y Full text